TY - JOUR A1 - Schaub, Torsten H. A1 - Brüning, Stefan A1 - Nicolas, Pascal T1 - XRay : a prolog technology theorem prover for default reasoning: a system description Y1 - 1996 SN - 3-540-61511-3 ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Janhunen, Tomi A1 - Schaub, Torsten H. T1 - What's a head without a body? Y1 - 2006 ER - TY - JOUR A1 - Brain, Martin A1 - Faber, Wolfgang A1 - Maratea, Marco A1 - Polleres, Axel A1 - Schaub, Torsten H. A1 - Schindlauer, Roman T1 - What should an ASP solver output? : a multiple position paper Y1 - 2007 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. T1 - What is a (non-constructive) non-monotone logical system? Y1 - 2000 SN - 0304-3975 ER - TY - JOUR A1 - Fandinno, Jorge A1 - Lifschitz, Vladimir A1 - Lühne, Patrick A1 - Schaub, Torsten H. T1 - Verifying tight logic programs with Anthem and Vampire JF - Theory and practice of logic programming N2 - This paper continues the line of research aimed at investigating the relationship between logic programs and first-order theories. We extend the definition of program completion to programs with input and output in a subset of the input language of the ASP grounder gringo, study the relationship between stable models and completion in this context, and describe preliminary experiments with the use of two software tools, anthem and vampire, for verifying the correctness of programs with input and output. Proofs of theorems are based on a lemma that relates the semantics of programs studied in this paper to stable models of first-order formulas. Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000344 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 735 EP - 750 PB - Cambridge Univ. Press CY - Cambridge [u.a.] ER - TY - GEN A1 - Neubauer, Kai A1 - Haubelt, Christian A1 - Wanko, Philipp A1 - Schaub, Torsten H. T1 - Utilizing quad-trees for efficient design space exploration with partial assignment evaluation T2 - 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC) N2 - Recently, it has been shown that constraint-based symbolic solving techniques offer an efficient way for deciding binding and routing options in order to obtain a feasible system level implementation. In combination with various background theories, a feasibility analysis of the resulting system may already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can be pruned early in the decision process, which fastens the solving accordingly. However, allowing a proper design space exploration including multi-objective optimization also requires an efficient structure for storing and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree data structure in the context of partial assignment evaluation during system synthesis. Out experiments show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees over a commonly used list-based implementation for large combinatorial optimization problems. Y1 - 2018 SN - 978-1-5090-0602-1 U6 - https://doi.org/10.1109/ASPDAC.2018.8297362 SN - 2153-6961 SP - 434 EP - 439 PB - IEEE CY - New York ER - TY - JOUR A1 - Nicolas, Pascal A1 - Schaub, Torsten H. T1 - Un cadre général pour l'interrogation automatique en logiques des défauts Y1 - 1998 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Two approaches to merging knowledge bases Y1 - 2004 SN - 3-540-23242-7 ER - TY - JOUR A1 - Borchert, P. A1 - Anger, Christian A1 - Schaub, Torsten H. A1 - Truszczynski, M. T1 - Towards systematic benchmarking in answer set programming : the dagstuhl initiative Y1 - 2004 SN - 3-540- 20721-x ER - TY - JOUR A1 - Cabalar, Pedro A1 - Dieguez, Martin A1 - Schaub, Torsten H. A1 - Schuhmann, Anna T1 - Towards metric temporal answer set programming JF - Theory and practice of logic programming N2 - We elaborate upon the theoretical foundations of a metric temporal extension of Answer Set Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the same semantic underpinnings as its predecessors and thus use a simple time domain of bounded time steps. This allows us to compare all variants in a uniform framework and ultimately combine them in a common implementation. Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000307 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 783 EP - 798 PB - Cambridge Univ. Press CY - Cambridge [u.a.] ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Wang, Kewen T1 - Towards a classification of preference handling approaches in nonmonotonic reasoning Y1 - 2002 SN - 1-577-35166-5 ER - TY - JOUR A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Towards a classification of default logic Y1 - 1997 ER - TY - JOUR A1 - Flöter, André A1 - Nicolas, Jacques A1 - Schaub, Torsten H. A1 - Selbig, Joachim T1 - Threshold extraction in metabolite concentration data N2 - Motivation: Continued development of analytical techniques based on gas chromatography and mass spectrometry now facilitates the generation of larger sets of metabolite concentration data. An important step towards the understanding of metabolite dynamics is the recognition of stable states where metabolite concentrations exhibit a simple behaviour. Such states can be characterized through the identification of significant thresholds in the concentrations. But general techniques for finding discretization thresholds in continuous data prove to be practically insufficient for detecting states due to the weak conditional dependences in concentration data. Results: We introduce a method of recognizing states in the framework of decision tree induction. It is based upon a global analysis of decision forests where stability and quality are evaluated. It leads to the detection of thresholds that are both comprehensible and robust. Applied to metabolite concentration data, this method has led to the discovery of hidden states in the corresponding variables. Some of these reflect known properties of the biological experiments, and others point to putative new states Y1 - 2004 ER - TY - JOUR A1 - Flöter, André A1 - Nicolas, Jacques A1 - Schaub, Torsten H. A1 - Selbig, Joachim T1 - Threshold extraction in metabolite concentration data Y1 - 2003 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/floeterGCB2003.pdf ER - TY - JOUR A1 - Nicolas, Pascal A1 - Schaub, Torsten H. T1 - The XRay system : an implementation platform for local query-answering in default logics Y1 - 1998 SN - 3-540-65312-0 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - The role of default logic in knowledge representation Y1 - 2000 SN - 0-7923-7224-7 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaminski, Roland A1 - Kaufmann, Benjamin A1 - Lühne, Patrick A1 - Obermeier, Philipp A1 - Ostrowski, Max A1 - Romero Davila, Javier A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian A1 - Wanko, Philipp T1 - The Potsdam Answer Set Solving Collection 5.0 JF - Künstliche Intelligenz N2 - The Potsdam answer set solving collection, or Potassco for short, bundles various tools implementing and/or applying answer set programming. The article at hand succeeds an earlier description of the Potassco project published in Gebser et al. (AI Commun 24(2):107-124, 2011). Hence, we concentrate in what follows on the major features of the most recent, fifth generation of the ASP system clingo and highlight some recent resulting application systems. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0528-x SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 181 EP - 182 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Anger, Christian A1 - Gebser, Martin A1 - Linke, Thomas A1 - Neumann, Andre A1 - Schaub, Torsten H. T1 - The nomore++ approach to answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/angelinesc05c.pdf ER - TY - JOUR A1 - Gebser, Martin A1 - Liu, Lengning A1 - Namasivayam, Gayathri A1 - Neumann, André A1 - Schaub, Torsten H. A1 - Truszczynski, Miroslaw T1 - The first answer set programming system competition Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Schaub, Torsten H. T1 - The family of default logics Y1 - 1998 ER - TY - BOOK A1 - Schaub, Torsten H. T1 - The automation of reasoning with incomplete information : from semantic foundations to efficient computation T3 - Lecture notes in computer science Y1 - 1999 SN - 3-540-64515-2 U6 - https://doi.org/10.1007/BFb0054963 VL - 1409 PB - Springer CY - Berlin ER - TY - JOUR A1 - Banbara, Mutsunori A1 - Inoue, Katsumi A1 - Kaufmann, Benjamin A1 - Okimoto, Tenda A1 - Schaub, Torsten H. A1 - Soh, Takehide A1 - Tamura, Naoyuki A1 - Wanko, Philipp T1 - teaspoon BT - solving the curriculum-based course timetabling problems with answer set programming JF - Annals of operation research N2 - Answer Set Programming (ASP) is an approach to declarative problem solving, combining a rich yet simple modeling language with high performance solving capacities. We here develop an ASP-based approach to curriculum-based course timetabling (CB-CTT), one of the most widely studied course timetabling problems. The resulting teaspoon system reads a CB-CTT instance of a standard input format and converts it into a set of ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving, which can subsequently be solved by any off-the-shelf ASP systems. We establish the competitiveness of our approach by empirically contrasting it to the best known bounds obtained so far via dedicated implementations. Furthermore, we extend the teaspoon system to multi-objective course timetabling and consider minimal perturbation problems. KW - Educational timetabling KW - Course timetabling KW - Answer set programming KW - Multi-objective optimization KW - Minimal perturbation problems Y1 - 2018 U6 - https://doi.org/10.1007/s10479-018-2757-7 SN - 0254-5330 SN - 1572-9338 VL - 275 IS - 1 SP - 3 EP - 37 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Tableau calculi for logic programs under answer set semantics JF - ACM transactions on computational logic N2 - We introduce formal proof systems based on tableau methods for analyzing computations in Answer Set Programming (ASP). Our approach furnishes fine-grained instruments for characterizing operations as well as strategies of ASP solvers. The granularity is detailed enough to capture a variety of propagation and choice methods of algorithms used for ASP solving, also incorporating SAT-based and conflict-driven learning approaches to some extent. This provides us with a uniform setting for identifying and comparing fundamental properties of ASP solving approaches. In particular, we investigate their proof complexities and show that the run-times of best-case computations can vary exponentially between different existing ASP solvers. Apart from providing a framework for comparing ASP solving approaches, our characterizations also contribute to their understanding by pinning down the constitutive atomic operations. Furthermore, our framework is flexible enough to integrate new inference patterns, and so to study their relation to existing ones. To this end, we generalize our approach and provide an extensible basis aiming at a modular incorporation of additional language constructs. This is exemplified by augmenting our basic tableau methods with cardinality constraints and disjunctions. KW - Theory KW - Answer Set Programming KW - tableau calculi KW - proof complexity Y1 - 2013 U6 - https://doi.org/10.1145/2480759.2480767 SN - 1529-3785 VL - 14 IS - 2 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Gerbser, Martin A1 - Schaub, Torsten H. T1 - Tableau calculi for answer set programming Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/gebsch06c.pdf U6 - https://doi.org/10.1007/11799573 SN - 0302-9743 ER - TY - GEN A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Special issue on answer set programming T2 - Künstliche Intelligenz Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0554-8 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 101 EP - 103 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Schaub, Torsten H. A1 - Thielscher, Michael T1 - Skeptical query-answering in constrained default logic Y1 - 1996 SN - 3-540-61313-7 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. T1 - Significant inferences Y1 - 2000 SN - 1-55860-690-4 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. T1 - Signed systems for paraconsistent reasoning Y1 - 1998 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. T1 - Signed systems for paraconsistent reasoning Y1 - 1998 SN - 0168-7433 ER - TY - JOUR A1 - Gebser, Martin A1 - Obermeier, Philipp A1 - Schaub, Torsten H. A1 - Ratsch-Heitmann, Michel A1 - Runge, Mario T1 - Routing driverless transport vehicles in car assembly with answer set programming JF - Theory and practice of logic programming N2 - Automated storage and retrieval systems are principal components of modern production and warehouse facilities. In particular, automated guided vehicles nowadays substitute human-operated pallet trucks in transporting production materials between storage locations and assembly stations. While low-level control systems take care of navigating such driverless vehicles along programmed routes and avoid collisions even under unforeseen circumstances, in the common case of multiple vehicles sharing the same operation area, the problem remains how to set up routes such that a collection of transport tasks is accomplished most effectively. We address this prevalent problem in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, a large-scale producer of commercial vehicles, where routes for automated guided vehicles used in the production process have traditionally been hand-coded by human engineers. Such adhoc methods may suffice as long as a running production process remains in place, while any change in the factory layout or production targets necessitates tedious manual reconfiguration, not to mention the missing portability between different production plants. Unlike this, we propose a declarative approach based on Answer Set Programming to optimize the routes taken by automated guided vehicles for accomplishing transport tasks. The advantages include a transparent and executable problem formalization, provable optimality of routes relative to objective criteria, as well as elaboration tolerance towards particular factory layouts and production targets. Moreover, we demonstrate that our approach is efficient enough to deal with the transport tasks evolving in realistic production processes at the car factory of Mercedes-Benz Ludwigsfelde GmbH. KW - automated guided vehicle routing KW - car assembly operations KW - answer set programming Y1 - 2018 U6 - https://doi.org/10.1017/S1471068418000182 SN - 1471-0684 SN - 1475-3081 VL - 18 IS - 3-4 SP - 520 EP - 534 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Reasoning with sets of preferences in default logic N2 - We present a general approach for representing and reasoning with sets of defaults in default logic, focusing on reasoning about preferences among sets of defaults. First, we consider how to control the application of a set of defaults so that either all apply (if possible) or none do (if not). From this, an approach to dealing with preferences among sets of default rules is developed. We begin with an ordered default theory, consisting of a standard default theory, but with possible preferences on sets of rules. This theory is transformed into a second, standard default theory wherein the preferences are respected. The approach differs from other work, in that we obtain standard default theories and do not rely on prioritized versions of default logic. In practical terms this means we can immediately use existing default logic theorem provers for an implementation. Also, we directly generate just those extensions containing the most preferred applied rules; in contrast, most previous approaches generate all extensions, then select the most preferred. In a major application of the approach, we show how semimonotonic default theories can be encoded so that reasoning can be carried out at the object level. With this, we can reason about default extensions from within the framework of a standard default logic. Hence one can encode notions such as skeptical and credulous conclusions, and can reason about such conclusions within a single extension Y1 - 2004 SN - 0824-7935 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Reasoning with sets of preferences in default logic Y1 - 1998 SN - 3-540- 65271-x ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Reasoning credulously and skeptically within a single extension Y1 - 2003 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Reasoning credulously and skeptically within a single extension Y1 - 2002 ER - TY - JOUR A1 - Benhammadi, Farid A1 - Nicolas, Pascal A1 - Schaub, Torsten H. T1 - Query-answering in prioritized default logic Y1 - 1999 SN - 3-540-66131-X ER - TY - JOUR A1 - Benhammadi, Farid A1 - Nicolas, Pascal A1 - Schaub, Torsten H. T1 - Query-answering in prioritized default logic Y1 - 1999 SN - 3-540-66131-X ER - TY - JOUR A1 - Mileo, Alessandra A1 - Schaub, Torsten H. T1 - Qualitative constraint enforcement in advanced policy specification Y1 - 2007 ER - TY - JOUR A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Putting default logics in perspective Y1 - 1996 SN - 3-540-61708-6 ER - TY - JOUR A1 - Schaub, Torsten H. A1 - Brüning, Stefan T1 - Prolog technology for default reasoning : proof theory and compilation techniques Y1 - 1998 ER - TY - JOUR A1 - Schaub, Torsten H. A1 - Brüning, Stefan T1 - Prolog technology for default reasoning Y1 - 1996 SN - 0-471-96809-9 ER - TY - JOUR A1 - Boesel, Andreas A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Profiling answer set programming : the visualization component of the noMoRe System Y1 - 2004 SN - 3-540-23242-7 ER - TY - JOUR A1 - Schaub, Torsten H. A1 - Wang, T. T1 - Preferred well-founded semantics for logic programming by alternating fixpoints : preliminary report Y1 - 2002 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Kaminski, Roland A1 - Ostrowski, Max A1 - Schaub, Torsten H. A1 - Schneider, Marius T1 - Potassco the Potsdam answer set solving collection JF - AI communications : AICOM ; the European journal on artificial intelligence N2 - This paper gives an overview of the open source project Potassco, the Potsdam Answer Set Solving Collection, bundling tools for Answer Set Programming developed at the University of Potsdam. KW - Answer set programming KW - declarative problem solving Y1 - 2011 U6 - https://doi.org/10.3233/AIC-2011-0491 SN - 0921-7126 VL - 24 IS - 2 SP - 107 EP - 124 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Gressmann, Jean A1 - Janhunen, Tomi A1 - Mercer, Robert E. A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Tichy, Richard T1 - Platypus : a platform for distributed answer set solving Y1 - 2005 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/grjamescthti05a.pdf ER - TY - JOUR A1 - Dimopoulos, Yannis A1 - Gebser, Martin A1 - Lühne, Patrick A1 - Romero Davila, Javier A1 - Schaub, Torsten H. T1 - plasp 3 BT - Towards Effective ASP Planning JF - Theory and practice of logic programming N2 - We describe the new version of the Planning Domain Definition Language (PDDL)-to-Answer Set Programming (ASP) translator plasp. First, it widens the range of accepted PDDL features. Second, it contains novel planning encodings, some inspired by Satisfiability Testing (SAT) planning and others exploiting ASP features such as well-foundedness. All of them are designed for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats. Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed from SAT planning. As a result, plasp provides us with an ASP-based framework for studying a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical analysis that these techniques have a significant impact on the performance of ASP planning. KW - knowledge representation and nonmonotonic reasoning KW - technical notes and rapid communications KW - answer set programming KW - automated planning KW - action and change Y1 - 2019 U6 - https://doi.org/10.1017/S1471068418000583 SN - 1471-0684 SN - 1475-3081 VL - 19 IS - 3 SP - 477 EP - 504 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Paraconsistent reasoning via quantified boolean formulas : Part II: Circumscribing inconsistent theories Y1 - 2003 SN - 3-540- 409494-5 ER - TY - JOUR A1 - Besnard, Philippe A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Paraconsistent reasoning via quantified boolean formulas Y1 - 2002 SN - 3-540-44190-5 ER - TY - JOUR A1 - Besnard, Philippe A1 - Mercer, Robert E. A1 - Schaub, Torsten H. T1 - Optimality Theory via Default Logic Y1 - 2002 ER - TY - JOUR A1 - Besnard, Philippe A1 - Mercer, Robert E. A1 - Schaub, Torsten H. T1 - Optimality theory throught default logic Y1 - 2003 SN - 3-540-20059-2 ER - TY - JOUR A1 - Besnard, Philippe A1 - Fanselow, Gisbert A1 - Schaub, Torsten H. T1 - Optimality theory as a family of cumulative logics Y1 - 2002 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - On the relation between Reiterïs default logic and its (major) variants Y1 - 2003 SN - 3-540- 409494-5 ER - TY - JOUR A1 - Gressmann, Jean A1 - Janhunen, Tomi A1 - Mercer, Robert E. A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Tichy, Richard T1 - On probing and multi-threading in platypus Y1 - 2006 UR - http://www2.in.tu-clausthal.de/~tmbehrens/NMR_Proc_TR4.pdf ER - TY - JOUR A1 - Gressmann, Jean A1 - Janhunen, Tomi A1 - Mercer, Robert E. A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Tichy, Richard T1 - On probing and multi-threading in platypus Y1 - 2006 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On computing solutions to belief change scenarios Y1 - 2001 SN - 3-540- 42464-4 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - On Computing belief change operations using quantifield boolean formulas N2 - In this paper, we show how an approach to belief revision and belief contraction can be axiomatized by means of quantified Boolean formulas. Specifically, we consider the approach of belief change scenarios, a general framework that has been introduced for expressing different forms of belief change. The essential idea is that for a belief change scenario (K, R, C), the set of formulas K, representing the knowledge base, is modified so that the sets of formulas R and C are respectively true in, and consistent with the result. By restricting the form of a belief change scenario, one obtains specific belief change operators including belief revision, contraction, update, and merging. For both the general approach and for specific operators, we give a quantified Boolean formula such that satisfying truth assignments to the free variables correspond to belief change extensions in the original approach. Hence, we reduce the problem of determining the results of a belief change operation to that of satisfiability. This approach has several benefits. First, it furnishes an axiomatic specification of belief change with respect to belief change scenarios. This then leads to further insight into the belief change framework. Second, this axiomatization allows us to identify strict complexity bounds for the considered reasoning tasks. Third, we have implemented these different forms of belief change by means of existing solvers for quantified Boolean formulas. As well, it appears that this approach may be straightforwardly applied to other specific approaches to belief change Y1 - 2004 SN - 0955-792X ER - TY - JOUR A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - On bottom-up pre-processing techniques for automated default reasoning Y1 - 1999 SN - 3-540-66131-x ER - TY - JOUR A1 - Grell, Susanne A1 - Konczak, Kathrin A1 - Schaub, Torsten H. T1 - nomore) : a system for computing preferred Answer Sets Y1 - 2005 SN - 0302-9743 ER - TY - JOUR A1 - Gebser, Martin A1 - Kaufmann, Benjamin A1 - Schaub, Torsten H. T1 - Multi-threaded ASP solving with clasp JF - Theory and practice of logic programming N2 - We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We detail its component and communication architecture and illustrate how they support the principal functionalities of clasp. Also, we provide some insights into the data representation used for different constraint types handled by clasp. All this is accompanied by an extensive experimental analysis of the major features related to multi-threading in clasp. Y1 - 2012 U6 - https://doi.org/10.1017/S1471068412000166 SN - 1471-0684 VL - 12 IS - 8 SP - 525 EP - 545 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Gebser, Martin A1 - Gharib, Mona A1 - Mercer, Robert E. A1 - Schaub, Torsten H. T1 - Monotonic answer set programming N2 - Answer set programming (ASP) does not allow for incrementally constructing answer sets or locally validating constructions like proofs by only looking at a part of the given program. In this article, we elaborate upon an alternative approach to ASP that allows for incremental constructions. Our approach draws its basic intuitions from the area of default logics. We investigate the feasibility of the concept of semi-monotonicity known from default logics as a basis of incrementality. On the one hand, every logic program has at least one answer set in our alternative setting, which moreover can be constructed incrementally based on generating rules. On the other hand, the approach may produce answer sets lacking characteristic properties of standard answer sets, such as being a model of the given program. We show how integrity constraints can be used to re-establish such properties, even up to correspondence with standard answer sets. Furthermore, we develop an SLD-like proof procedure for our incremental approach to ASP, which allows for query-oriented computations. Also, we provide a characterization of our definition of answer sets via a modification of Clarks completion. Based on this notion of program completion, we present an algorithm for computing the answer sets of a logic program in our approach. Y1 - 2009 UR - http://logcom.oxfordjournals.org/ U6 - https://doi.org/10.1093/logcom/exn040 SN - 0955-792X ER - TY - JOUR A1 - Grell, Susanne A1 - Schaub, Torsten H. A1 - Selbig, Joachim T1 - Modelling biological networks by action languages via set programming Y1 - 2006 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/gebsch06c.pdf U6 - https://doi.org/10.1007/11799573 SN - 0302-9743 ER - TY - JOUR A1 - Kaminski, Roland A1 - Schaub, Torsten H. A1 - Siegel, Anne A1 - Videla, Santiago T1 - Minimal intervention strategies in logical signaling networks with ASP JF - Theory and practice of logic programming N2 - Proposing relevant perturbations to biological signaling networks is central to many problems in biology and medicine because it allows for enabling or disabling certain biological outcomes. In contrast to quantitative methods that permit fine-grained (kinetic) analysis, qualitative approaches allow for addressing large-scale networks. This is accomplished by more abstract representations such as logical networks. We elaborate upon such a qualitative approach aiming at the computation of minimal interventions in logical signaling networks relying on Kleene's three-valued logic and fixpoint semantics. We address this problem within answer set programming and show that it greatly outperforms previous work using dedicated algorithms. Y1 - 2013 U6 - https://doi.org/10.1017/S1471068413000422 SN - 1471-0684 VL - 13 SP - 675 EP - 690 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Gharib, Mona A1 - Mercer, Robert E. A1 - Risch, V. A1 - Schaub, Torsten H. T1 - Lukaszewicz-style answer set programming : a preliminary report Y1 - 2003 UR - http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-78/ SN - 1613-0073 ER - TY - GEN A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Lower Bound Founded Logic of Here-and-There T2 - Logics in Artificial Intelligence N2 - A distinguishing feature of Answer Set Programming is that all atoms belonging to a stable model must be founded. That is, an atom must not only be true but provably true. This can be made precise by means of the constructive logic of Here-and-There, whose equilibrium models correspond to stable models. One way of looking at foundedness is to regard Boolean truth values as ordered by letting true be greater than false. Then, each Boolean variable takes the smallest truth value that can be proven for it. This idea was generalized by Aziz to ordered domains and applied to constraint satisfaction problems. As before, the idea is that a, say integer, variable gets only assigned to the smallest integer that can be justified. In this paper, we present a logical reconstruction of Aziz’ idea in the setting of the logic of Here-and-There. More precisely, we start by defining the logic of Here-and-There with lower bound founded variables along with its equilibrium models and elaborate upon its formal properties. Finally, we compare our approach with related ones and sketch future work. Y1 - 2019 SN - 978-3-030-19570-0 SN - 978-3-030-19569-4 U6 - https://doi.org/10.1007/978-3-030-19570-0_34 SN - 0302-9743 SN - 1611-3349 VL - 11468 SP - 509 EP - 525 PB - Springer CY - Cham ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - Logic programs with compiled preferences Y1 - 2000 SN - 1-58603-013-2 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - Logic programs with compiled preferences Y1 - 2000 UR - http://xxx.lanl.gov/abs/cs.AI/0003028 ER - TY - JOUR A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Lemma handling in default logic theorem provers Y1 - 1995 SN - 3540601120 ER - TY - JOUR A1 - Videla, Santiago A1 - Guziolowski, Carito A1 - Eduati, Federica A1 - Thiele, Sven A1 - Gebser, Martin A1 - Nicolas, Jacques A1 - Saez-Rodriguez, Julio A1 - Schaub, Torsten H. A1 - Siegel, Anne T1 - Learning Boolean logic models of signaling networks with ASP JF - Theoretical computer science N2 - Boolean networks provide a simple yet powerful qualitative modeling approach in systems biology. However, manual identification of logic rules underlying the system being studied is in most cases out of reach. Therefore, automated inference of Boolean logical networks from experimental data is a fundamental question in this field. This paper addresses the problem consisting of learning from a prior knowledge network describing causal interactions and phosphorylation activities at a pseudo-steady state, Boolean logic models of immediate-early response in signaling transduction networks. The underlying optimization problem has been so far addressed through mathematical programming approaches and the use of dedicated genetic algorithms. In a recent work we have shown severe limitations of stochastic approaches in this domain and proposed to use Answer Set Programming (ASP), considering a simpler problem setting. Herein, we extend our previous work in order to consider more realistic biological conditions including numerical datasets, the presence of feedback-loops in the prior knowledge network and the necessity of multi-objective optimization. In order to cope with such extensions, we propose several discretization schemes and elaborate upon our previous ASP encoding. Towards real-world biological data, we evaluate the performance of our approach over in silico numerical datasets based on a real and large-scale prior knowledge network. The correctness of our encoding and discretization schemes are dealt with in Appendices A-B. (C) 2014 Elsevier B.V. All rights reserved. KW - Answer set programming KW - Signaling transduction networks KW - Boolean logic models KW - Combinatorial multi-objective optimization KW - Systems biology Y1 - 2015 U6 - https://doi.org/10.1016/j.tcs.2014.06.022 SN - 0304-3975 SN - 1879-2294 VL - 599 SP - 79 EP - 101 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mileo, Alessandra A1 - Schaub, Torsten H. A1 - Merico, Davide A1 - Bisiani, Roberto T1 - Knowledge-based multi-criteria optimization to support indoor positioning JF - Annals of mathematics and artificial intelligence N2 - Indoor position estimation constitutes a central task in home-based assisted living environments. Such environments often rely on a heterogeneous collection of low-cost sensors whose diversity and lack of precision has to be compensated by advanced techniques for localization and tracking. Although there are well established quantitative methods in robotics and neighboring fields for addressing these problems, they lack advanced knowledge representation and reasoning capacities. Such capabilities are not only useful in dealing with heterogeneous and incomplete information but moreover they allow for a better inclusion of semantic information and more general homecare and patient-related knowledge. We address this problem and investigate how state-of-the-art localization and tracking methods can be combined with Answer Set Programming, as a popular knowledge representation and reasoning formalism. We report upon a case-study and provide a first experimental evaluation of knowledge-based position estimation both in a simulated as well as in a real setting. KW - Knowledge representation KW - Answer Set Programming KW - Wireless Sensor Networks KW - Localization KW - Tracking Y1 - 2011 U6 - https://doi.org/10.1007/s10472-011-9241-2 SN - 1012-2443 SN - 1573-7470 VL - 62 IS - 3-4 SP - 345 EP - 370 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Hermenegildo, Manuel A1 - Schaub, Torsten H. T1 - Introduction to the technical communications of the 26th International Conference on Logic Programming : special issue Y1 - 2010 UR - http://www.cs.kuleuven.ac.be/~dtai/projects/ALP//TPLP/ U6 - https://doi.org/10.1017/S1471068410000153 SN - 1471-0684 ER - TY - GEN A1 - Bosser, Anne-Gwenn A1 - Cabalar, Pedro A1 - Dieguez, Martin A1 - Schaub, Torsten H. T1 - Introducing temporal stable models for linear dynamic logic T2 - 16th International Conference on Principles of Knowledge Representation and Reasoning N2 - We propose a new temporal extension of the logic of Here-and-There (HT) and its equilibria obtained by combining it with dynamic logic over (linear) traces. Unlike previous temporal extensions of HT based on linear temporal logic, the dynamic logic features allow us to reason about the composition of actions. For instance, this can be used to exercise fine grained control when planning in robotics, as exemplified by GOLOG. In this paper, we lay the foundations of our approach, and refer to it as Linear Dynamic Equilibrium Logic, or simply DEL. We start by developing the formal framework of DEL and provide relevant characteristic results. Among them, we elaborate upon the relationships to traditional linear dynamic logic and previous temporal extensions of HT. Y1 - 2018 UR - https://www.dc.fi.udc.es/~cabalar/del.pdf SP - 12 EP - 21 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - GEN A1 - Lifschitz, Vladimir A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Interview with Vladimir Lifschitz T2 - Künstliche Intelligenz N2 - This interview with Vladimir Lifschitz was conducted by Torsten Schaub at the University of Texas at Austin in August 2017. The question set was compiled by Torsten Schaub and Stefan Woltran. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0552-x SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 213 EP - 218 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Brewka, Gerhard A1 - Schaub, Torsten H. A1 - Woltran, Stefan T1 - Interview with Gerhard Brewka T2 - Künstliche Intelligenz N2 - This interview with Gerhard Brewka was conducted by correspondance in May 2018. The question set was compiled by Torsten Schaub and Stefan Woltran. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0549-5 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 219 EP - 221 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Gebser, Martin A1 - Gharib, Mona A1 - Schaub, Torsten H. T1 - Incremental answer sets and their computation Y1 - 2007 ER - TY - JOUR A1 - Gharib, Mona A1 - Schaub, Torsten H. A1 - Mercer, Robert E. T1 - Incremental answer set programming : a preliminary report Y1 - 2007 ER - TY - JOUR A1 - Frioux, Clémence A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian A1 - Siegel, Anne A1 - Wanko, Philipp T1 - Hybrid metabolic network completion JF - Theory and practice of logic programming N2 - Metabolic networks play a crucial role in biology since they capture all chemical reactions in an organism. While there are networks of high quality for many model organisms, networks for less studied organisms are often of poor quality and suffer from incompleteness. To this end, we introduced in previous work an answer set programming (ASP)-based approach to metabolic network completion. Although this qualitative approach allows for restoring moderately degraded networks, it fails to restore highly degraded ones. This is because it ignores quantitative constraints capturing reaction rates. To address this problem, we propose a hybrid approach to metabolic network completion that integrates our qualitative ASP approach with quantitative means for capturing reaction rates. We begin by formally reconciling existing stoichiometric and topological approaches to network completion in a unified formalism. With it, we develop a hybrid ASP encoding and rely upon the theory reasoning capacities of the ASP system dingo for solving the resulting logic program with linear constraints over reals. We empirically evaluate our approach by means of the metabolic network of Escherichia coli. Our analysis shows that our novel approach yields greatly superior results than obtainable from purely qualitative or quantitative approaches. KW - answer set programming KW - metabolic network KW - gap-filling KW - linear programming KW - hybrid solving KW - bioinformatics Y1 - 2018 U6 - https://doi.org/10.1017/S1471068418000455 SN - 1471-0684 SN - 1475-3081 VL - 19 IS - 1 SP - 83 EP - 108 PB - Cambridge University Press CY - New York ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - How to reason credulously and skeptically within a single extension. Y1 - 2001 SN - 3-540- 42464-4 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - How to reason credulously and skeptically within a single extension Y1 - 2001 ER - TY - JOUR A1 - Volkmann, Gerald A1 - Linke, Thomas A1 - Waschulzik, Thomas A1 - Ohmes, Rick A1 - Schaub, Torsten H. A1 - Wischnewsky, M. T1 - HExProSA - ein hybrides Expertensystem zur Prozeßkontrolle und Störfallanalyse von Abwasserbehandlungsanlagen : Erfahrungen bei der Evaluierung eines Prototypen Y1 - 1998 UR - http://home.zait.uni-bremen.de/~gerald/papers/pius-papers.html ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven T1 - GrinGo : a new grounder for answer set programming Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Konczak, Kathrin A1 - Schaub, Torsten H. A1 - Linke, Thomas T1 - Graphs and colorings for answer set programming with prefernces : preliminary report Y1 - 2003 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/koschli03a.pdf SN - 1613-0073 ER - TY - JOUR A1 - Konczak, Kathrin A1 - Schaub, Torsten H. A1 - Linke, Thomas T1 - Graphs and colorings for answer set programming with preferences N2 - The integration of preferences into answer set programming constitutes an important practical device for distinguishing certain preferred answer sets from non-preferred ones. To this end, we elaborate upon rule dependency graphs and their colorings for characterizing different preference handling strategies found in the literature. We start from a characterization of (three types of) preferred answer sets in terms of totally colored dependency graphs. In particular, we demonstrate that this approach allows us to capture all three approaches to preferences in a uniform setting by means of the concept of a height function. In turn, we exemplarily develop an operational characterization of preferred answer sets in terms of operators on partial colorings for one particular strategy. In analogy to the notion of a derivation in proof theory, our operational characterization is expressed as a (non-deterministically formed) sequence of colorings, gradually turning an uncolored graph into a totally colored one Y1 - 2003 SN - 0169-2968 ER - TY - JOUR A1 - Konczak, Kathrin A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Graphs and colorings for answer set programming : abridged report Y1 - 2003 UR - http://www.cs.uni-potsdam.de/wv/pdfformat/kolisch03a.pdf SN - 1613-0073 ER - TY - JOUR A1 - Konczak, Kathrin A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Graphs and colorings for answer set programming N2 - We investigate the usage of rule dependency graphs and their colorings for characterizing and computing answer sets of logic programs. This approach provides us with insights into the interplay between rules when inducing answer sets. We start with different characterizations of answer sets in terms of totally colored dependency graphs that differ ill graph-theoretical aspects. We then develop a series of operational characterizations of answer sets in terms of operators on partial colorings. In analogy to the notion of a derivation in proof theory, our operational characterizations are expressed as (non-deterministically formed) sequences of colorings, turning an uncolored graph into a totally colored one. In this way, we obtain an operational framework in which different combinations of operators result in different formal properties. Among others, we identify the basic strategy employed by the noMoRe system and justify its algorithmic approach. Furthermore, we distinguish operations corresponding to Fitting's operator as well as to well-founded semantics Y1 - 2006 UR - http://www.cs.kuleuven.ac.be/~dtai/projects/ALP//TPLP/ U6 - https://doi.org/10.1017/S1471068405002528 SN - 1471-0684 ER - TY - JOUR A1 - Konczak, Kathrin A1 - Linke, Thomas A1 - Schaub, Torsten H. T1 - Graphs and cologings for answer set programming : adridged report Y1 - 2004 SN - 3-540- 20721-x ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. T1 - Generic tableaux for answer set programming Y1 - 2007 ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Gelfond-Zhang aggregates as propositional formulas JF - Artificial intelligence N2 - Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide. KW - Aggregates KW - Answer Set Programming Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2018.10.007 SN - 0004-3702 SN - 1872-7921 VL - 274 SP - 26 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Flöter, André A1 - Selbig, Joachim A1 - Schaub, Torsten H. T1 - Finding metabolic pathways in decision forests Y1 - 2004 SN - 3-540-23221-4 ER - TY - JOUR A1 - Benhammadi, Farid A1 - Nicolas, Pascal A1 - Schaub, Torsten H. T1 - Extension calculus and query answering in prioritized default logic Y1 - 1998 SN - 3-540-64993-X ER - TY - JOUR A1 - Benhammadi, Farid A1 - Nicolas, Pascal A1 - Schaub, Torsten H. T1 - Extension calculus and query answering in prioritized default logic Y1 - 1998 SN - 3-540- 64993-X ER - TY - JOUR A1 - Mileo, Alessandra A1 - Schaub, Torsten H. T1 - Extending ordered disjunctions for policy enforcement : preliminary report Y1 - 2006 UR - http://www.easychair.org/FLoC-06/PREFS-preproceedings.pdf ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Expressing preferences in default logic Y1 - 2000 SN - 0004-3702 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Expressing default logic variants in default logic N2 - Reiter's default logic is one of the best known and most studied of the approaches to nonmonotonic reasoning. Several variants of default logic have subsequently been proposed to give systems with properties differing from the original. In this paper, we examine the relationship between default logic and its major variants. We accomplish this by translating a default theory under a variant interpretation into a second default theory, under the original Reiter semantics, wherein the variant interpretation is respected. That is, in each case we show that, given an extension of a translated theory, one may extract an extension of the original variant default logic theory. We show how constrained, rational, justified, and cumulative default logic can be expressed in Reiter's default logic. As well, we show how Reiter's default logic can be expressed in rational default logic. From this, we suggest that any such variant can be similarly treated. Consequently, we provide a unification of default logics, showing how the original formulation of default logic may express its variants. Moreover, the translations clearly express the relationships between alternative approaches to default logic. The translations themselves are shown to generally have good properties. Thus, in at least a theoretical sense, we show that these variants are in a sense superfluous, in that for any of these variants of default logic, we can exactly mimic the behaviour of a variant in standard default logic. As well, the translations lend insight into means of classifying the expressive power of default logic variants; specifically we suggest that the property of semi-monotonicity represents a division with respect to expressibility, whereas regularity and cumulativity do not Y1 - 2005 SN - 0955-792X ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Garea, Javier A1 - Romero, Javier A1 - Schaub, Torsten H. T1 - Eclingo BT - a solver for epistemic logic programs JF - Theory and practice of logic programming N2 - We describe eclingo, a solver for epistemic logic programs under Gelfond 1991 semantics built upon the Answer Set Programming system clingo. The input language of eclingo uses the syntax extension capabilities of clingo to define subjective literals that, as usual in epistemic logic programs, allow for checking the truth of a regular literal in all or in some of the answer sets of a program. The eclingo solving process follows a guess and check strategy. It first generates potential truth values for subjective literals and, in a second step, it checks the obtained result with respect to the cautious and brave consequences of the program. This process is implemented using the multi-shot functionalities of clingo. We have also implemented some optimisations, aiming at reducing the search space and, therefore, increasing eclingo 's efficiency in some scenarios. Finally, we compare the efficiency of eclingo with two state-of-the-art solvers for epistemic logic programs on a pair of benchmark scenarios and show that eclingo generally outperforms their obtained results. KW - Answer Set Programming KW - Epistemic Logic Programs KW - Non-Monotonic KW - Reasoning KW - Conformant Planning Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000228 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 6 SP - 834 EP - 847 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. A1 - Tompits, Hans T1 - Domain-specific preference for causal reasoning and planning Y1 - 2004 SN - 1-577-35201-7 ER - TY - JOUR A1 - Gebser, Martin A1 - Schaub, Torsten H. A1 - Thiele, Sven A1 - Veber, Philippe T1 - Detecting inconsistencies in large biological networks with answer set programming JF - Theory and practice of logic programming N2 - We introduce an approach to detecting inconsistencies in large biological networks by using answer set programming. To this end, we build upon a recently proposed notion of consistency between biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an approach based on answer set programming to check the consistency of large-scale data sets. Moreover, we extend this methodology to provide explanations for inconsistencies by determining minimal representations of conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions. KW - answer set programming KW - bioinformatics KW - consistency KW - diagnosis Y1 - 2011 U6 - https://doi.org/10.1017/S1471068410000554 SN - 1471-0684 VL - 11 IS - 5-6 SP - 323 EP - 360 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Haubelt, Christian A1 - Neubauer, Kai A1 - Schaub, Torsten H. A1 - Wanko, Philipp T1 - Design space exploration with answer set programming JF - Künstliche Intelligenz N2 - The aim of our project design space exploration with answer set programming is to develop a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system design problem and simultaneously performs Design Space Exploration (DSE) to find the most favorable alternatives. We leverage recent developments in ASP solving that allow for tight integration of background theories to create a holistic framework for effective DSE. Y1 - 2018 U6 - https://doi.org/10.1007/s13218-018-0530-3 SN - 0933-1875 SN - 1610-1987 VL - 32 IS - 2-3 SP - 205 EP - 206 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Thielscher, Michael A1 - Schaub, Torsten H. T1 - Default reasoning by deductive planning Y1 - 1995 ER - TY - JOUR A1 - Brain, Martin A1 - Gebser, Martin A1 - Pührer, Jörg A1 - Schaub, Torsten H. A1 - Tompits, Hans A1 - Woltran, Stefan T1 - Debugging ASP programs by means of ASP Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Delgrande, James Patrick A1 - Schaub, Torsten H. T1 - Consistency-based approaches to merging knowledge based : preliminary report Y1 - 2004 UR - http://www.pims.math.ca/science/2004/NMR/papers/paper17.pdf SN - 92-990021-0-X ER -