TY - JOUR A1 - Sahlmann, Kristina A1 - Clemens, Vera A1 - Nowak, Michael A1 - Schnor, Bettina T1 - MUP BT - Simplifying Secure Over-The-Air Update with MQTT for Constrained IoT Devices JF - Sensors N2 - Message Queuing Telemetry Transport (MQTT) is one of the dominating protocols for edge- and cloud-based Internet of Things (IoT) solutions. When a security vulnerability of an IoT device is known, it has to be fixed as soon as possible. This requires a firmware update procedure. In this paper, we propose a secure update protocol for MQTT-connected devices which ensures the freshness of the firmware, authenticates the new firmware and considers constrained devices. We show that the update protocol is easy to integrate in an MQTT-based IoT network using a semantic approach. The feasibility of our approach is demonstrated by a detailed performance analysis of our prototype implementation on a IoT device with 32 kB RAM. Thereby, we identify design issues in MQTT 5 which can help to improve the support of constrained devices. KW - Internet of Things KW - security KW - firmware update KW - MQTT KW - edge computing Y1 - 2020 U6 - https://doi.org/10.3390/s21010010 SN - 1424-8220 VL - 21 IS - 1 PB - MDPI CY - Basel ER - TY - GEN A1 - Sahlmann, Kristina A1 - Schwotzer, Thomas T1 - Ontology-based virtual IoT devices for edge computing T2 - Proceedings of the 8th International Conference on the Internet of Things N2 - An IoT network may consist of hundreds heterogeneous devices. Some of them may be constrained in terms of memory, power, processing and network capacity. Manual network and service management of IoT devices are challenging. We propose a usage of an ontology for the IoT device descriptions enabling automatic network management as well as service discovery and aggregation. Our IoT architecture approach ensures interoperability using existing standards, i.e. MQTT protocol and SemanticWeb technologies. We herein introduce virtual IoT devices and their semantic framework deployed at the edge of network. As a result, virtual devices are enabled to aggregate capabilities of IoT devices, derive new services by inference, delegate requests/responses and generate events. Furthermore, they can collect and pre-process sensor data. These tasks on the edge computing overcome the shortcomings of the cloud usage regarding siloization, network bandwidth, latency and speed. We validate our proposition by implementing a virtual device on a Raspberry Pi. KW - Internet of Things KW - Edge Computing KW - oneM2M Ontology KW - M2M KW - Semantic Interoperability KW - MQTT Y1 - 2018 SN - 978-1-4503-6564-2 U6 - https://doi.org/10.1145/3277593.3277597 SP - 1 EP - 7 PB - Association for Computing Machinery CY - New York ER -