TY - JOUR A1 - Thon, Ingo A1 - Landwehr, Niels A1 - De Raedt, Luc T1 - Stochastic relational processes efficient inference and applications JF - Machine learning N2 - One of the goals of artificial intelligence is to develop agents that learn and act in complex environments. Realistic environments typically feature a variable number of objects, relations amongst them, and non-deterministic transition behavior. While standard probabilistic sequence models provide efficient inference and learning techniques for sequential data, they typically cannot fully capture the relational complexity. On the other hand, statistical relational learning techniques are often too inefficient to cope with complex sequential data. In this paper, we introduce a simple model that occupies an intermediate position in this expressiveness/efficiency trade-off. It is based on CP-logic (Causal Probabilistic Logic), an expressive probabilistic logic for modeling causality. However, by specializing CP-logic to represent a probability distribution over sequences of relational state descriptions and employing a Markov assumption, inference and learning become more tractable and effective. Specifically, we show how to solve part of the inference and learning problems directly at the first-order level, while transforming the remaining part into the problem of computing all satisfying assignments for a Boolean formula in a binary decision diagram. We experimentally validate that the resulting technique is able to handle probabilistic relational domains with a substantial number of objects and relations. KW - Statistical relational learning KW - Stochastic relational process KW - Markov processes KW - Time series KW - CP-Logic Y1 - 2011 U6 - https://doi.org/10.1007/s10994-010-5213-8 SN - 0885-6125 VL - 82 IS - 2 SP - 239 EP - 272 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Cilia, Elisa A1 - Landwehr, Niels A1 - Passerini, Andrea T1 - Relational feature mining with hierarchical multitask kFOIL JF - Fundamenta informaticae N2 - We introduce hierarchical kFOIL as a simple extension of the multitask kFOIL learning algorithm. The algorithm first learns a core logic representation common to all tasks, and then refines it by specialization on a per-task basis. The approach can be easily generalized to a deeper hierarchy of tasks. A task clustering algorithm is also proposed in order to automatically generate the task hierarchy. The approach is validated on problems of drug-resistance mutation prediction and protein structural classification. Experimental results show the advantage of the hierarchical version over both single and multi task alternatives and its potential usefulness in providing explanatory features for the domain. Task clustering allows to further improve performance when a deeper hierarchy is considered. Y1 - 2011 U6 - https://doi.org/10.3233/FI-2011-604 SN - 0169-2968 VL - 113 IS - 2 SP - 151 EP - 177 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Sawade, Christoph A1 - Bickel, Steffen A1 - von Oertzen, Timo A1 - Scheffer, Tobias A1 - Landwehr, Niels T1 - Active evaluation of ranking functions based on graded relevance JF - Machine learning N2 - Evaluating the quality of ranking functions is a core task in web search and other information retrieval domains. Because query distributions and item relevance change over time, ranking models often cannot be evaluated accurately on held-out training data. Instead, considerable effort is spent on manually labeling the relevance of query results for test queries in order to track ranking performance. We address the problem of estimating ranking performance as accurately as possible on a fixed labeling budget. Estimates are based on a set of most informative test queries selected by an active sampling distribution. Query labeling costs depend on the number of result items as well as item-specific attributes such as document length. We derive cost-optimal sampling distributions for the commonly used performance measures Discounted Cumulative Gain and Expected Reciprocal Rank. Experiments on web search engine data illustrate significant reductions in labeling costs. KW - Information retrieval KW - Ranking KW - Active evaluation Y1 - 2013 U6 - https://doi.org/10.1007/s10994-013-5372-5 SN - 0885-6125 VL - 92 IS - 1 SP - 41 EP - 64 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Hempel, Sabrina A1 - Adolphs, Julian A1 - Landwehr, Niels A1 - Willink, Dilya A1 - Janke, David A1 - Amon, Thomas T1 - Supervised machine learning to assess methane emissions of a dairy building with natural ventilation JF - Applied Sciences N2 - A reliable quantification of greenhouse gas emissions is a basis for the development of adequate mitigation measures. Protocols for emission measurements and data analysis approaches to extrapolate to accurate annual emission values are a substantial prerequisite in this context. We systematically analyzed the benefit of supervised machine learning methods to project methane emissions from a naturally ventilated cattle building with a concrete solid floor and manure scraper located in Northern Germany. We took into account approximately 40 weeks of hourly emission measurements and compared model predictions using eight regression approaches, 27 different sampling scenarios and four measures of model accuracy. Data normalization was applied based on median and quartile range. A correlation analysis was performed to evaluate the influence of individual features. This indicated only a very weak linear relation between the methane emission and features that are typically used to predict methane emission values of naturally ventilated barns. It further highlighted the added value of including day-time and squared ambient temperature as features. The error of the predicted emission values was in general below 10%. The results from Gaussian processes, ordinary multilinear regression and neural networks were least robust. More robust results were obtained with multilinear regression with regularization, support vector machines and particularly the ensemble methods gradient boosting and random forest. The latter had the added value to be rather insensitive against the normalization procedure. In the case of multilinear regression, also the removal of not significantly linearly related variables (i.e., keeping only the day-time component) led to robust modeling results. We concluded that measurement protocols with 7 days and six measurement periods can be considered sufficient to model methane emissions from the dairy barn with solid floor with manure scraper, particularly when periods are distributed over the year with a preference for transition periods. Features should be normalized according to median and quartile range and must be carefully selected depending on the modeling approach. KW - greenhouse gas KW - on-farm evaluation KW - emission factor KW - regression KW - ensemble methods KW - gradient boosting KW - random forest KW - neural networks KW - support vector machines Y1 - 2020 U6 - https://doi.org/10.3390/app10196938 SN - 2076-3417 VL - 10 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wahl, Marina A1 - Hölscher, Michael T1 - Und am Wochenende Blended Learning BT - Herausforderungen und Maßnahmen für Lehr-Lern-Szenarien in der universitären Weiterbildung. Das Beispiel Universität Speyer. JF - E-Learning Symposium 2018 N2 - Berufsbegleitende Studiengänge stehen vor besonderen Schwierigkeiten, für die der Einsatz von Blended Learning-Szenarien sinnvoll sein kann. Welche speziellen Herausforderungen sich dabei ergeben und welche Lösungsansätze dagegen steuern, betrachtet der folgende Artikel anhand eines Praxisberichts aus dem Studiengang M. P. A. Wissenschaftsmanagement an der Universität Speyer. KW - Blended Learning KW - E-Learning KW - Weiterbildung KW - LMS KW - OpenOLAT KW - Strategie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421910 SP - 17 EP - 27 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Gautam, Khem Raj A1 - Zhang, Guoqiang A1 - Landwehr, Niels A1 - Adolphs, Julian T1 - Machine learning for improvement of thermal conditions inside a hybrid ventilated animal building JF - Computers and electronics in agriculture : COMPAG online ; an international journal N2 - In buildings with hybrid ventilation, natural ventilation opening positions (windows), mechanical ventilation rates, heating, and cooling are manipulated to maintain desired thermal conditions. The indoor temperature is regulated solely by ventilation (natural and mechanical) when the external conditions are favorable to save external heating and cooling energy. The ventilation parameters are determined by a rule-based control scheme, which is not optimal. This study proposes a methodology to enable real-time optimum control of ventilation parameters. We developed offline prediction models to estimate future thermal conditions from the data collected from building in operation. The developed offline model is then used to find the optimal controllable ventilation parameters in real-time to minimize the setpoint deviation in the building. With the proposed methodology, the experimental building's setpoint deviation improved for 87% of time, on average, by 0.53 degrees C compared to the current deviations. KW - Animal building KW - Natural ventilation KW - Automatically controlled windows KW - Machine learning KW - Optimization Y1 - 2021 U6 - https://doi.org/10.1016/j.compag.2021.106259 SN - 0168-1699 SN - 1872-7107 VL - 187 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Camargo, Tibor de A1 - Schirrmann, Michael A1 - Landwehr, Niels A1 - Dammer, Karl-Heinz A1 - Pflanz, Michael T1 - Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops JF - Remote sensing / Molecular Diversity Preservation International (MDPI) N2 - Weed maps should be available quickly, reliably, and with high detail to be useful for site-specific management in crop protection and to promote more sustainable agriculture by reducing pesticide use. Here, the optimization of a deep residual convolutional neural network (ResNet-18) for the classification of weed and crop plants in UAV imagery is proposed. The target was to reach sufficient performance on an embedded system by maintaining the same features of the ResNet-18 model as a basis for fast UAV mapping. This would enable online recognition and subsequent mapping of weeds during UAV flying operation. Optimization was achieved mainly by avoiding redundant computations that arise when a classification model is applied on overlapping tiles in a larger input image. The model was trained and tested with imagery obtained from a UAV flight campaign at low altitude over a winter wheat field, and classification was performed on species level with the weed species Matricaria chamomilla L., Papaver rhoeas L., Veronica hederifolia L., and Viola arvensis ssp. arvensis observed in that field. The ResNet-18 model with the optimized image-level prediction pipeline reached a performance of 2.2 frames per second with an NVIDIA Jetson AGX Xavier on the full resolution UAV image, which would amount to about 1.78 ha h(-1) area output for continuous field mapping. The overall accuracy for determining crop, soil, and weed species was 94%. There were some limitations in the detection of species unknown to the model. When shifting from 16-bit to 32-bit model precision, no improvement in classification accuracy was observed, but a strong decline in speed performance, especially when a higher number of filters was used in the ResNet-18 model. Future work should be directed towards the integration of the mapping process on UAV platforms, guiding UAVs autonomously for mapping purpose, and ensuring the transferability of the models to other crop fields. KW - ResNet KW - deep residual networks KW - UAV imagery KW - embedded systems KW - crop KW - monitoring KW - image classification KW - site-specific weed management KW - real-time mapping Y1 - 2021 U6 - https://doi.org/10.3390/rs13091704 SN - 2072-4292 VL - 13 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Abdelwahab, Ahmed A1 - Landwehr, Niels T1 - Deep Distributional Sequence Embeddings Based on a Wasserstein Loss JF - Neural processing letters N2 - Deep metric learning employs deep neural networks to embed instances into a metric space such that distances between instances of the same class are small and distances between instances from different classes are large. In most existing deep metric learning techniques, the embedding of an instance is given by a feature vector produced by a deep neural network and Euclidean distance or cosine similarity defines distances between these vectors. This paper studies deep distributional embeddings of sequences, where the embedding of a sequence is given by the distribution of learned deep features across the sequence. The motivation for this is to better capture statistical information about the distribution of patterns within the sequence in the embedding. When embeddings are distributions rather than vectors, measuring distances between embeddings involves comparing their respective distributions. The paper therefore proposes a distance metric based on Wasserstein distances between the distributions and a corresponding loss function for metric learning, which leads to a novel end-to-end trainable embedding model. We empirically observe that distributional embeddings outperform standard vector embeddings and that training with the proposed Wasserstein metric outperforms training with other distance functions. KW - Metric learning KW - Sequence embeddings KW - Deep learning Y1 - 2022 U6 - https://doi.org/10.1007/s11063-022-10784-y SN - 1370-4621 SN - 1573-773X PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Tran, Son Cao A1 - Pontelli, Enrico A1 - Balduccini, Marcello A1 - Schaub, Torsten T1 - Answer set planning BT - a survey JF - Theory and practice of logic programming N2 - Answer Set Planning refers to the use of Answer Set Programming (ASP) to compute plans, that is, solutions to planning problems, that transform a given state of the world to another state. The development of efficient and scalable answer set solvers has provided a significant boost to the development of ASP-based planning systems. This paper surveys the progress made during the last two and a half decades in the area of answer set planning, from its foundations to its use in challenging planning domains. The survey explores the advantages and disadvantages of answer set planning. It also discusses typical applications of answer set planning and presents a set of challenges for future research. KW - planning KW - knowledge representation and reasoning KW - logic programming Y1 - 2022 U6 - https://doi.org/10.1017/S1471068422000072 SN - 1471-0684 SN - 1475-3081 PB - Cambridge University Press CY - New York ER - TY - JOUR A1 - Strickroth, Sven A1 - Kiy, Alexander T1 - E-Assessment etablieren BT - Auf dem Weg zu (dezentralen) E-Klausuren JF - Potsdamer Beiträge zur Hochschulforschung N2 - Elektronische Lernstandserhebungen, sogenannte E-Assessments, bieten für Lehrende und Studierende viele Vorteile z. B. hinsichtlich schneller Rückmeldungen oder kompetenzorientierter Fragenformate, und ermöglichen es, unabhängig von Ort und Zeit Prüfungen zu absolvieren. In diesem Beitrag werden die Einführung von summativen Lernstandserhebungen, sogenannter E-Klausuren, am Beispiel der Universität Potsdam, der Aufbau einer länderübergreifenden Initiative für E-Assessment sowie technische Möglichkeiten für dezentrale elektronische Klausuren vorgestellt. Dabei werden der aktuelle Stand, die Ziele und die gewählte stufenweise Umsetzungsstrategie der Universität Potsdam skizziert. Darauf aufbauend folgt eine Beschreibung des Vorgehens, der Kooperationsmöglichkeiten für den Wissens- und Erfahrungsaustausch sowie Herausforderungen der E-Assessment- Initiative. Abschließend werden verschiedene E-Klausurformen und technische Möglichkeiten zur Umsetzung komplexer Prüfungsumgebungen klassifiziert sowie mit ihren charakteristischen Vor- und Nachteilen diskutiert und eine integrierte Lösung vorgeschlagen. KW - E-Assessment KW - Elektronisches Prüfen KW - E-Klausuren KW - Digitalisierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-493036 SN - 978-3-86956-498-2 SN - 2192-1075 SN - 2192-1083 IS - 6 SP - 257 EP - 272 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Lucke, Ulrike A1 - Strickroth, Sven T1 - Digitalisierung in Lehre und Studium BT - Eine hochschulweite Perspektive JF - Potsdamer Beiträge zur Hochschulforschung N2 - Das größte der fächerübergreifenden Projekte im Potsdamer Projekt Qualitätspakt Lehre hatte die flächendeckende Etablierung von digitalen Medien als einen integralen Bestandteil von Lehre und Studium zum Gegenstand. Im Teilprojekt E-Learning in Studienbereichen (eLiS) wurden dafür Maßnahmen in den Feldern Organisations-, technische und Inhaltsentwicklung zusammengeführt. Der vorliegende Beitrag präsentiert auf Basis von Ausgangslage und Zielsetzungen die Ergebnisse rund um die Digitalisierung von Lehre und Studium an der Universität Potsdam. Exemplarisch werden fünf Dienste näher vorgestellt, die inzwischen größtenteils in den Regelbetrieb der Hochschule übergegangen sind: die Videoplattform Media.UP, die mobile App Reflect.UP, die persönliche Lernumgebung Campus. UP, das Self-Service-Portal Cook.UP und das Anzeigesystem Freiraum.UP. Dabei wird jeweils ein technischer Blick „unter die Haube“ verbunden mit einer Erläuterung der Nutzungsmöglichkeiten, denen eine aktuelle Einschätzung von Lehrenden und Studierenden der Hochschule gegenübergestellt wird. Der Beitrag schließt mit einer Einbettung der vorgestellten Entwicklungen in einen größeren Kontext und einem Ausblick auf die weiterhin anstehenden Aufgaben. KW - Digitale Medien KW - E-Learning KW - Persönliche Lernumgebung KW - E-Portfolio KW - Mobile App KW - IT-Infrastruktur Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-493024 SN - 978-3-86956-498-2 SN - 2192-1075 SN - 2192-1083 IS - 6 SP - 235 EP - 255 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Schell, Timon A1 - Schwill, Andreas T1 - „Es ist kompliziert, alles inklusive Privatleben unter einen Hut zu bekommen“ BT - Eine Studie zu Nutzen und Schaden von Arbeitsverhältnissen für das Informatikstudium JF - Hochschuldidaktik Informatik HDI 2021 (Commentarii informaticae didacticae) N2 - Eine übliche Erzählung verknüpft lange Studienzeiten und hohe Abbrecherquoten im Informatikstudium zum einen mit der sehr gut bezahlten Nebentätigkeit von Studierenden in der Informatikbranche, die deutlich studienzeitverlängernd sei; zum anderen werde wegen des hohen Bedarfs an Informatikern ein formeller Studienabschluss von den Studierenden häufig als entbehrlich betrachtet und eine Karriere in der Informatikbranche ohne abgeschlossenes Studium begonnen. In dieser Studie, durchgeführt an der Universität Potsdam, untersuchen wir, wie viele Informatikstudierende neben dem Studium innerhalb und außerhalb der Informatikbranche arbeiten, welche Erwartungen sie neben der Bezahlung damit verbinden und wie sich die Tätigkeit auf ihr Studium und ihre spätere berufliche Perspektive auswirkt. Aus aktuellem Anlass interessieren uns auch die Auswirkungen der Covid-19-Pandemie auf die Arbeitstätigkeiten der Informatikstudierenden. KW - Informatikstudium KW - Studienabbrecher KW - Studentenjobs KW - Studiendauer Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-613882 SN - 978-3-86956-548-4 SN - 1868-0844 SN - 2191-1940 IS - 13 SP - 53 EP - 71 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Brede, Nuria A1 - Botta, Nicola T1 - On the correctness of monadic backward induction JF - Journal of functional programming N2 - In control theory, to solve a finite-horizon sequential decision problem (SDP) commonly means to find a list of decision rules that result in an optimal expected total reward (or cost) when taking a given number of decision steps. SDPs are routinely solved using Bellman's backward induction. Textbook authors (e.g. Bertsekas or Puterman) typically give more or less formal proofs to show that the backward induction algorithm is correct as solution method for deterministic and stochastic SDPs. Botta, Jansson and Ionescu propose a generic framework for finite horizon, monadic SDPs together with a monadic version of backward induction for solving such SDPs. In monadic SDPs, the monad captures a generic notion of uncertainty, while a generic measure function aggregates rewards. In the present paper, we define a notion of correctness for monadic SDPs and identify three conditions that allow us to prove a correctness result for monadic backward induction that is comparable to textbook correctness proofs for ordinary backward induction. The conditions that we impose are fairly general and can be cast in category-theoretical terms using the notion of Eilenberg-Moore algebra. They hold in familiar settings like those of deterministic or stochastic SDPs, but we also give examples in which they fail. Our results show that backward induction can safely be employed for a broader class of SDPs than usually treated in textbooks. However, they also rule out certain instances that were considered admissible in the context of Botta et al. 's generic framework. Our development is formalised in Idris as an extension of the Botta et al. framework and the sources are available as supplementary material. Y1 - 2021 U6 - https://doi.org/10.1017/S0956796821000228 SN - 1469-7653 SN - 0956-7968 VL - 31 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Michallek, Florian A1 - Genske, Ulrich A1 - Niehues, Stefan Markus A1 - Hamm, Bernd A1 - Jahnke, Paul T1 - Deep learning reconstruction improves radiomics feature stability and discriminative power in abdominal CT imaging BT - a phantom study JF - European Radiology N2 - Objectives To compare image quality of deep learning reconstruction (AiCE) for radiomics feature extraction with filtered back projection (FBP), hybrid iterative reconstruction (AIDR 3D), and model-based iterative reconstruction (FIRST). Methods Effects of image reconstruction on radiomics features were investigated using a phantom that realistically mimicked a 65-year-old patient's abdomen with hepatic metastases. The phantom was scanned at 18 doses from 0.2 to 4 mGy, with 20 repeated scans per dose. Images were reconstructed with FBP, AIDR 3D, FIRST, and AiCE. Ninety-three radiomics features were extracted from 24 regions of interest, which were evenly distributed across three tissue classes: normal liver, metastatic core, and metastatic rim. Features were analyzed in terms of their consistent characterization of tissues within the same image (intraclass correlation coefficient >= 0.75), discriminative power (Kruskal-Wallis test p value < 0.05), and repeatability (overall concordance correlation coefficient >= 0.75). Results The median fraction of consistent features across all doses was 6%, 8%, 6%, and 22% with FBP, AIDR 3D, FIRST, and AiCE, respectively. Adequate discriminative power was achieved by 48%, 82%, 84%, and 92% of features, and 52%, 20%, 17%, and 39% of features were repeatable, respectively. Only 5% of features combined consistency, discriminative power, and repeatability with FBP, AIDR 3D, and FIRST versus 13% with AiCE at doses above 1 mGy and 17% at doses >= 3 mGy. AiCE was the only reconstruction technique that enabled extraction of higher-order features. Conclusions AiCE more than doubled the yield of radiomics features at doses typically used clinically. Inconsistent tissue characterization within CT images contributes significantly to the poor stability of radiomics features. KW - Tomography KW - X-ray computed KW - Phantoms KW - imaging KW - Liver neoplasms KW - Algorithms KW - Reproducibility of results Y1 - 2022 U6 - https://doi.org/10.1007/s00330-022-08592-y SN - 1432-1084 VL - 32 IS - 7 SP - 4587 EP - 4595 PB - Springer CY - New York ER - TY - JOUR A1 - Dines, Nicoleta A1 - Liu, Xiaochun A1 - Schulze, Bert-Wolfgang T1 - Edge quantisation of elliptic operators JF - Preprint / Universität Potsdam, Institut für Mathematik, Arbeitsgruppe Partiell N2 - The ellipticity of operators on a manifold with edge is defined as the bijectivity of the components of a principal symbolic hierarchy sigma = (sigma(psi), sigma(boolean AND)), where the second component takes values in operators on the infinite model cone of the local wedges. In the general understanding of edge problems there are two basic aspects: Quantisation of edge-degenerate operators in weighted Sobolev spaces, and verifying the ellipticity of the principal edge symbol sigma(boolean AND) which includes the (in general not explicity known) number of additional conditions of trace and potential type on the edge. We focus here on these questions and give explicit answers for a wide class of elliptic operators that are connected with the ellipticity of edge boundary value problems and reductions to the boundary. In particular, we study the edge quantisation and ellipticity for Dirichlet-Neumann operators with respect to interfaces of some codimension on a boundary. We show analogues of the Agranovich-Dynin formula for edge boundary value problems. Y1 - 2009 UR - http://www.springerlink.com/content/103082 U6 - https://doi.org/10.1007/s00605-008-0058-y SN - 1437-739X ER - TY - JOUR A1 - Bandyopadhyay, Soumyadip A1 - Sarkar, Dipankar A1 - Mandal, Chittaranjan A1 - Giese, Holger T1 - Translation validation of coloured Petri net models of programs on integers JF - Acta informatica N2 - Programs are often subjected to significant optimizing and parallelizing transformations based on extensive dependence analysis. Formal validation of such transformations needs modelling paradigms which can capture both control and data dependences in the program vividly. Being value-based with an inherent scope of capturing parallelism, the untimed coloured Petri net (CPN) models, reported in the literature, fit the bill well; accordingly, they are likely to be more convenient as the intermediate representations (IRs) of both the source and the transformed codes for translation validation than strictly sequential variable-based IRs like sequential control flow graphs (CFGs). In this work, an efficient path-based equivalence checking method for CPN models of programs on integers is presented. Extensive experimentation has been carried out on several sequential and parallel examples. Complexity and correctness issues have been treated rigorously for the method. Y1 - 2022 U6 - https://doi.org/10.1007/s00236-022-00419-z SN - 0001-5903 SN - 1432-0525 VL - 59 IS - 6 SP - 725 EP - 759 PB - Springer CY - New York ER - TY - JOUR A1 - Omranian, Nooshin A1 - Müller-Röber, Bernd A1 - Nikoloski, Zoran T1 - Segmentation of biological multivariate time-series data JF - Scientific reports N2 - Time-series data from multicomponent systems capture the dynamics of the ongoing processes and reflect the interactions between the components. The progression of processes in such systems usually involves check-points and events at which the relationships between the components are altered in response to stimuli. Detecting these events together with the implicated components can help understand the temporal aspects of complex biological systems. Here we propose a regularized regression-based approach for identifying breakpoints and corresponding segments from multivariate time-series data. In combination with techniques from clustering, the approach also allows estimating the significance of the determined breakpoints as well as the key components implicated in the emergence of the breakpoints. Comparative analysis with the existing alternatives demonstrates the power of the approach to identify biologically meaningful breakpoints in diverse time-resolved transcriptomics data sets from the yeast Saccharomyces cerevisiae and the diatom Thalassiosira pseudonana. Y1 - 2015 U6 - https://doi.org/10.1038/srep08937 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Chen, Junchao A1 - Lange, Thomas A1 - Andjelkovic, Marko A1 - Simevski, Aleksandar A1 - Lu, Li A1 - Krstić, Miloš T1 - Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning JF - IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers N2 - The intensity of cosmic radiation may differ over five orders of magnitude within a few hours or days during the Solar Particle Events (SPEs), thus increasing for several orders of magnitude the probability of Single Event Upsets (SEUs) in space-borne electronic systems. Therefore, it is vital to enable the early detection of the SEU rate changes in order to ensure timely activation of dynamic radiation hardening measures. In this paper, an embedded approach for the prediction of SPEs and SRAM SEU rate is presented. The proposed solution combines the real-time SRAM-based SEU monitor, the offline-trained machine learning model and online learning algorithm for the prediction. With respect to the state-of-the-art, our solution brings the following benefits: (1) Use of existing on-chip data storage SRAM as a particle detector, thus minimizing the hardware and power overhead, (2) Prediction of SRAM SEU rate one hour in advance, with the fine-grained hourly tracking of SEU variations during SPEs as well as under normal conditions, (3) Online optimization of the prediction model for enhancing the prediction accuracy during run-time, (4) Negligible cost of hardware accelerator design for the implementation of selected machine learning model and online learning algorithm. The proposed design is intended for a highly dependable and self-adaptive multiprocessing system employed in space applications, allowing to trigger the radiation mitigation mechanisms before the onset of high radiation levels. KW - Machine learning KW - Single event upsets KW - Random access memory KW - monitoring KW - machine learning algorithms KW - predictive models KW - space missions KW - solar particle event KW - single event upset KW - machine learning KW - online learning KW - hardware accelerator KW - reliability KW - self-adaptive multiprocessing system Y1 - 2022 U6 - https://doi.org/10.1109/TETC.2022.3147376 SN - 2168-6750 VL - 10 IS - 2 SP - 564 EP - 580 PB - Institute of Electrical and Electronics Engineers CY - [New York, NY] ER - TY - JOUR A1 - Andjelković, Marko A1 - Chen, Junchao A1 - Simevski, Aleksandar A1 - Schrape, Oliver A1 - Krstić, Miloš A1 - Kraemer, Rolf T1 - Monitoring of particle count rate and LET variations with pulse stretching inverters JF - IEEE transactions on nuclear science : a publication of the IEEE Nuclear and Plasma Sciences Society N2 - This study investigates the use of pulse stretching (skew-sized) inverters for monitoring the variation of count rate and linear energy transfer (LET) of energetic particles. The basic particle detector is a cascade of two pulse stretching inverters, and the required sensing area is obtained by connecting up to 12 two-inverter cells in parallel and employing the required number of parallel arrays. The incident particles are detected as single-event transients (SETs), whereby the SET count rate denotes the particle count rate, while the SET pulsewidth distribution depicts the LET variations. The advantage of the proposed solution is the possibility to sense the LET variations using fully digital processing logic. SPICE simulations conducted on IHP's 130-nm CMOS technology have shown that the SET pulsewidth varies by approximately 550 ps over the LET range from 1 to 100 MeV center dot cm(2) center dot mg(-1). The proposed detector is intended for triggering the fault-tolerant mechanisms within a self-adaptive multiprocessing system employed in space. It can be implemented as a standalone detector or integrated in the same chip with the target system. KW - Particle detector KW - pulse stretching inverters KW - single-event transient KW - (SET) count rate KW - SET pulsewidth distribution Y1 - 2021 U6 - https://doi.org/10.1109/TNS.2021.3076400 SN - 0018-9499 SN - 1558-1578 VL - 68 IS - 8 SP - 1772 EP - 1781 PB - Institute of Electrical and Electronics Engineers CY - New York, NY ER - TY - JOUR A1 - Dimitriev, Alexej A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael A1 - Saposhnikov, V. V. T1 - On-line testing by self-dual duplication Y1 - 1997 ER - TY - JOUR A1 - Saposhnikov, V. V. A1 - Morosov, Andrej A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael T1 - A new design method for self-checking unidirectional combinational circuits Y1 - 1998 ER - TY - JOUR A1 - Seuring, Markus A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - A structural approach for space compaction for concurrent checking and BIST Y1 - 1998 ER - TY - JOUR A1 - Sogomonyan, Egor S. A1 - Gössel, Michael T1 - A new parity preserving multi-input signature analyser Y1 - 1995 ER - TY - JOUR A1 - Saposhnikov, Va. V. A1 - Morosov, Andrej A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael T1 - Design of self-checking unidirectional combinational circuits with low area overhead Y1 - 1996 ER - TY - JOUR A1 - Schrape, Oliver A1 - Andjelkovic, Marko A1 - Breitenreiter, Anselm A1 - Zeidler, Steffen A1 - Balashov, Alexey A1 - Krstić, Miloš T1 - Design and evaluation of radiation-hardened standard cell flip-flops JF - IEEE transactions on circuits and systems : a publication of the IEEE Circuits and Systems Society: 1, Regular papers N2 - Use of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flipflop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. Several flip-flop designs have been validated on IHP's 130nm BiCMOS process, by irradiation of custom-designed shift registers. It has been shown that the proposed TMR flip-flops are robust to soft errors with a threshold Linear Energy Transfer (LET) from (32.4 MeV.cm(2)/mg) to (62.5 MeV.cm(2)/mg), depending on the variant. KW - Single event effect KW - fault tolerance KW - triple modular redundancy KW - ASIC KW - design flow KW - radhard design Y1 - 2021 U6 - https://doi.org/10.1109/TCSI.2021.3109080 SN - 1549-8328 SN - 1558-0806 SN - 1057-7122 VL - 68 IS - 11 SP - 4796 EP - 4809 PB - Inst. of Electr. and Electronics Engineers CY - New York, NY ER - TY - JOUR A1 - Breitenreiter, Anselm A1 - Andjelković, Marko A1 - Schrape, Oliver A1 - Krstić, Miloš T1 - Fast error propagation probability estimates by answer set programming and approximate model counting JF - IEEE Access N2 - We present a method employing Answer Set Programming in combination with Approximate Model Counting for fast and accurate calculation of error propagation probabilities in digital circuits. By an efficient problem encoding, we achieve an input data format similar to a Verilog netlist so that extensive preprocessing is avoided. By a tight interconnection of our application with the underlying solver, we avoid iterating over fault sites and reduce calls to the solver. Several circuits were analyzed with varying numbers of considered cycles and different degrees of approximation. Our experiments show, that the runtime can be reduced by approximation by a factor of 91, whereas the error compared to the exact result is below 1%. KW - Circuit faults KW - Integrated circuit modeling KW - Programming KW - Analytical models KW - Search problems KW - Flip-flops KW - Encoding KW - Answer set programming KW - approximate model counting KW - error propagation KW - radhard design KW - reliability analysis KW - selective fault tolerance KW - single event upsets Y1 - 2022 U6 - https://doi.org/10.1109/ACCESS.2022.3174564 SN - 2169-3536 VL - 10 SP - 51814 EP - 51825 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - A parity-preserving multi-input signature analyzer and it application for concurrent checking and BIST Y1 - 1996 ER - TY - JOUR A1 - Li, Yuanqing A1 - Chen, Li A1 - Nofal, Issam A1 - Chen, Mo A1 - Wang, Haibin A1 - Liu, Rui A1 - Chen, Qingyu A1 - Krstić, Miloš A1 - Shi, Shuting A1 - Guo, Gang A1 - Baeg, Sang H. A1 - Wen, Shi-Jie A1 - Wong, Richard T1 - Modeling and analysis of single-event transient sensitivity of a 65 nm clock tree JF - Microelectronics reliability N2 - The soft error rate (SER) due to heavy-ion irradiation of a clock tree is investigated in this paper. A method for clock tree SER prediction is developed, which employs a dedicated soft error analysis tool to characterize the single-event transient (SET) sensitivities of clock inverters and other commercial tools to calculate the SER through fault-injection simulations. A test circuit including a flip-flop chain and clock tree in a 65 nm CMOS technology is developed through the automatic ASIC design flow. This circuit is analyzed with the developed method to calculate its clock tree SER. In addition, this circuit is implemented in a 65 nm test chip and irradiated by heavy ions to measure its SER resulting from the SETs in the clock tree. The experimental and calculation results of this case study present good correlation, which verifies the effectiveness of the developed method. KW - Clock tree KW - Modeling KW - Single-event transient (SET) Y1 - 2018 U6 - https://doi.org/10.1016/j.microrel.2018.05.016 SN - 0026-2714 VL - 87 SP - 24 EP - 32 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Morosov, Andrej A1 - Saposhnikov, Vl. V. A1 - Saposhnikov, V. V. A1 - Gössel, Michael T1 - Design of self dual fault-secure combinational circuits Y1 - 1997 ER - TY - JOUR A1 - Saposhnikov, Vl. V. A1 - Saposhnikov, V. V. A1 - Dimitriev, Alexej A1 - Gössel, Michael T1 - Self-dual duplication for error detection Y1 - 1998 ER - TY - JOUR A1 - Seuring, Markus A1 - Gössel, Michael T1 - A structural approach for space compaction for sequential circuits Y1 - 1999 ER - TY - JOUR A1 - Hartje, Hendrik A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - Synthesis of code-disjoint combinational circuits Y1 - 1997 ER - TY - JOUR A1 - Singh, Adit D. A1 - Sogomonyan, Egor S. A1 - Gössel, Michael A1 - Seuring, Markus T1 - Testability evaluation of sequential designs incorporating the multi-mode scannable memory element Y1 - 1999 ER - TY - JOUR A1 - Saposhnikov, V. V. A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael A1 - Morosov, Andrej T1 - A method of construction of combinational self-checking units with detection of all single faults Y1 - 1999 ER - TY - JOUR A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - Self-parity combinational-circuits for self-testing, concurrent fault-detection and parity scan design Y1 - 1994 ER - TY - JOUR A1 - Gössel, Michael A1 - Sogomonyan, Egor S. A1 - Morosov, Andrej T1 - A new totally error propagating compactor for arbitrary cores with digital interfaces Y1 - 1999 ER - TY - JOUR A1 - Gössel, Michael A1 - Morosov, Andrej A1 - Saposhnikov, V. V. A1 - Saposhnikov, VL. V. T1 - Design of combinational self-testing devices with unidirectionally independent outputs Y1 - 1994 ER - TY - JOUR A1 - Sogomonyan, Egor S. A1 - Singh, Adit D. A1 - Gössel, Michael T1 - A scan based concrrent BIST approach for low cost on-line testing Y1 - 1998 ER - TY - JOUR A1 - Dmitriev, Alexej A1 - Saposhnikov, V. V. A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael T1 - Self-dual sequential circuits for concurrent chechking Y1 - 1999 SN - 0-7695-0390-X ; 0-7695-0391-8 ER - TY - JOUR A1 - Sogomonyan, Egor S. A1 - Singh, Adit D. A1 - Gössel, Michael T1 - A multi-mode scannable memory element for high test application efficiency and delay testing Y1 - 1999 ER - TY - JOUR A1 - Ocheretnij, Vitalij A1 - Gössel, Michael A1 - Sogomonyan, Egor S. A1 - Marienfeld, Daniel T1 - Modulo p=3 checking for a carry select adder N2 - In this paper a self-checking carry select adder is proposed. The duplicated adder blocks which are inherent to a carry select adder without error detection are checked modulo 3. Compared to a carry select adder without error detection the delay of the MSB of the sum of the proposed adder does not increase. Compared to a self-checking duplicated carry select adder the area is reduced by 20%. No restrictions are imposed on the design of the adder blocks Y1 - 2006 UR - http://www.springerlink.com/content/100286 U6 - https://doi.org/10.1007/s10836-006-6260-8 ER - TY - JOUR A1 - Otscheretnij, Vitalij A1 - Saposhnikov, Vl. V. A1 - Saposhnikov, V. V. A1 - Gössel, Michael T1 - Fault-tolerant self-dual circuits Y1 - 1999 ER - TY - JOUR A1 - Saposhnikov, Vl. V. V. V. A1 - Moshanin, Vl. A1 - Saposhnikov, V. V. A1 - Gössel, Michael T1 - Experimental results for self-dual multi-output combinational circuits Y1 - 1999 ER - TY - JOUR A1 - Gössel, Michael A1 - Dimitriev, Alexej A1 - Saposhnikov, V. V. A1 - Saposhnikov, Vl. V. T1 - Eine selbsttestende Struktur zur on-line Fehlererkennung in kombinatorischen Schaltungen Y1 - 1999 ER - TY - JOUR A1 - Saposhnikov, Vl. V. A1 - Ocheretnij, V. A1 - Saposhnikov, V. V. A1 - Gössel, Michael T1 - Modified TMR-system with reduced hardware overhead Y1 - 1999 ER - TY - JOUR A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - New totally self-checking ripple and carry look-ahead adders Y1 - 1999 ER - TY - JOUR A1 - Gössel, Michael T1 - A new method of redundancy addition for circuit optimization JF - Preprint / Universität Potsdam, Institut für Informatik Y1 - 1999 SN - 0946-7580 VL - 1999, 08 PB - Univ. CY - Potsdam ER - TY - JOUR A1 - Bogue, Ted A1 - Jürgensen, Helmut A1 - Gössel, Michael T1 - Design of cover circuits for monitoring the output of a MISR Y1 - 1994 SN - 0-8186-6307-3 , 0-8186-6306-5 ER - TY - JOUR A1 - Morosov, Andrej A1 - Saposhnikov, V. V. A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael T1 - Ein Transformationsalgorithmus einer kombinatorischen Schaltung in eine monotone Schaltung Y1 - 1997 ER - TY - JOUR A1 - Saposhnikov, Vl. V. A1 - Dimitriev, Alexej A1 - Gössel, Michael A1 - Saposhnikov, Va. V. T1 - Self-dual parity checking - a new method for on-line testing Y1 - 1996 ER - TY - JOUR A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - Code disjoint self-parity combinational circuits for self-testing, concurrent fault detection and parity scan design Y1 - 1994 ER - TY - JOUR A1 - Kundu, S. A1 - Sogomonyan, Egor S. A1 - Gössel, Michael A1 - Tarnick, Steffen T1 - Self-checking comparator with one periodiv output Y1 - 1996 ER - TY - JOUR A1 - Hartje, Hendrik A1 - Sogomonyan, Egor S. A1 - Gössel, Michael T1 - Code disjoint circuits for partity codes Y1 - 1997 ER - TY - JOUR A1 - Bogue, Ted A1 - Jürgensen, Helmut A1 - Gössel, Michael T1 - BIST with negligible aliasing through random cover circuits Y1 - 1995 ER - TY - JOUR A1 - Rabenalt, Thomas A1 - Richter, Michael A1 - Pöhl, Frank A1 - Gössel, Michael T1 - Highly efficient test response compaction using a hierarchical x-masking technique JF - IEEE transactions on computer-aided design of integrated circuits and systems N2 - This paper presents a highly effective compactor architecture for processing test responses with a high percentage of x-values. The key component is a hierarchical configurable masking register, which allows the compactor to dynamically adapt to and provide excellent performance over a wide range of x-densities. A major contribution of this paper is a technique that enables the efficient loading of the x-masking data into the masking logic in a parallel fashion using the scan chains. A method for eliminating the requirement for dedicated mask control signals using automated test equipment timing flexibility is also presented. The proposed compactor is especially suited to multisite testing. Experiments with industrial designs show that the proposed compactor enables compaction ratios exceeding 200x. KW - Design for testability (DFT) KW - test response compaction KW - X-masking KW - X-values Y1 - 2012 U6 - https://doi.org/10.1109/TCAD.2011.2181847 SN - 0278-0070 VL - 31 IS - 6 SP - 950 EP - 957 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Dug, Mehmed A1 - Weidling, Stefan A1 - Sogomonyan, Egor A1 - Jokic, Dejan A1 - Krstić, Miloš T1 - Full error detection and correction method applied on pipelined structure using two approaches JF - Journal of circuits, systems and computers N2 - In this paper, two approaches are evaluated using the Full Error Detection and Correction (FEDC) method for a pipelined structure. The approaches are referred to as Full Duplication with Comparison (FDC) and Concurrent Checking with Parity Prediction (CCPP). Aforementioned approaches are focused on the borderline cases of FEDC method which implement Error Detection Circuit (EDC) in two manners for the purpose of protection of combinational logic to address the soft errors of unspecified duration. The FDC approach implements a full duplication of the combinational circuit, as the most complex and expensive implementation of the FEDC method, and the CCPP approach implements only the parity prediction bit, being the simplest and cheapest technique, for soft error detection. Both approaches are capable of detecting soft errors in the combinational logic, with single faults being injected into the design. On the one hand, the FDC approach managed to detect and correct all injected faults while the CCPP approach could not detect multiple faults created at the output of combinational circuit. On the other hand, the FDC approach leads to higher power consumption and area increase compared to the CCPP approach. KW - Fault tolerance KW - FEDC KW - EDC Y1 - 2020 U6 - https://doi.org/10.1142/S0218126620502187 SN - 0218-1266 SN - 1793-6454 VL - 29 IS - 13 PB - World Scientific CY - Singapore ER - TY - JOUR A1 - Li, Yuanqing A1 - Breitenreiter, Anselm A1 - Andjelkovic, Marko A1 - Chen, Junchao A1 - Babic, Milan A1 - Krstić, Miloš T1 - Double cell upsets mitigation through triple modular redundancy JF - Microelectronics Journal N2 - A triple modular redundancy (TMR) based design technique for double cell upsets (DCUs) mitigation is investigated in this paper. This technique adds three extra self-voter circuits into a traditional TMR structure to enable the enhanced error correction capability. Fault-injection simulations show that the soft error rate (SER) of the proposed technique is lower than 3% of that of TMR. The implementation of this proposed technique is compatible with the automatic digital design flow, and its applicability and performance are evaluated on an FIFO circuit. KW - Triple modular redundancy (TMR) KW - Double cell upsets (DCUs) Y1 - 2019 U6 - https://doi.org/10.1016/j.mejo.2019.104683 SN - 0026-2692 SN - 1879-2391 VL - 96 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Andjelkovic, Marko A1 - Simevski, Aleksandar A1 - Chen, Junchao A1 - Schrape, Oliver A1 - Stamenkovic, Zoran A1 - Krstić, Miloš A1 - Ilic, Stefan A1 - Ristic, Goran A1 - Jaksic, Aleksandar A1 - Vasovic, Nikola A1 - Duane, Russell A1 - Palma, Alberto J. A1 - Lallena, Antonio M. A1 - Carvajal, Miguel A. T1 - A design concept for radiation hardened RADFET readout system for space applications JF - Microprocessors and microsystems N2 - Instruments for measuring the absorbed dose and dose rate under radiation exposure, known as radiation dosimeters, are indispensable in space missions. They are composed of radiation sensors that generate current or voltage response when exposed to ionizing radiation, and processing electronics for computing the absorbed dose and dose rate. Among a wide range of existing radiation sensors, the Radiation Sensitive Field Effect Transistors (RADFETs) have unique advantages for absorbed dose measurement, and a proven record of successful exploitation in space missions. It has been shown that the RADFETs may be also used for the dose rate monitoring. In that regard, we propose a unique design concept that supports the simultaneous operation of a single RADFET as absorbed dose and dose rate monitor. This enables to reduce the cost of implementation, since the need for other types of radiation sensors can be minimized or eliminated. For processing the RADFET's response we propose a readout system composed of analog signal conditioner (ASC) and a self-adaptive multiprocessing system-on-chip (MPSoC). The soft error rate of MPSoC is monitored in real time with embedded sensors, allowing the autonomous switching between three operating modes (high-performance, de-stress and fault-tolerant), according to the application requirements and radiation conditions. KW - RADFET KW - Radiation hardness KW - Absorbed dose KW - Dose rate KW - Self-adaptive MPSoC Y1 - 2022 U6 - https://doi.org/10.1016/j.micpro.2022.104486 SN - 0141-9331 SN - 1872-9436 VL - 90 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ristic, Goran S. A1 - Ilic, Stefan D. A1 - Andjelkovic, Marko S. A1 - Duane, Russell A1 - Palma, Alberto J. A1 - Lalena, Antonio M. A1 - Krstić, Miloš A1 - Jaksic, Aleksandar B. T1 - Sensitivity and fading of irradiated RADFETs with different gate voltages JF - Nuclear Instruments and Methods in Physics Research Section A N2 - The radiation-sensitive field-effect transistors (RADFETs) with an oxide thickness of 400 nm are irradiated with gate voltages of 2, 4 and 6 V, and without gate voltage. A detailed analysis of the mechanisms responsible for the creation of traps during irradiation is performed. The creation of the traps in the oxide, near and at the silicon/silicon-dioxide (Si/SiO2) interface during irradiation is modelled very well. This modelling can also be used for other MOS transistors containing SiO2. The behaviour of radiation traps during postirradiation annealing is analysed, and the corresponding functions for their modelling are obtained. The switching traps (STs) do not have significant influence on threshold voltage shift, and two radiation-induced trap types fit the fixed traps (FTs) very well. The fading does not depend on the positive gate voltage applied during irradiation, but it is twice lower in case there is no gate voltage. A new dosimetric parameter, called the Golden Ratio (GR), is proposed, which represents the ratio between the threshold voltage shift after irradiation and fading after spontaneous annealing. This parameter can be useful for comparing MOS dosimeters. KW - pMOS radiation dosimeter KW - RADFETs KW - irradiation KW - sensitivity KW - annealing KW - fading Y1 - 2022 U6 - https://doi.org/10.1016/j.nima.2022.166473 SN - 0168-9002 SN - 1872-9576 VL - 1029 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hilscher, Martin A1 - Braun, Michael A1 - Richter, Michael A1 - Leininger, Andreas A1 - Gössel, Michael T1 - X-tolerant test data compaction with accelerated shift registers N2 - Using the timing flexibility of modern automatic test equipment (ATE) test response data can be compacted without the need for additional X-masking logic. In this article the test response is compacted by several multiple input shift registers without feedback (NF-MISR). The shift registers are running on a k-times higher clock frequency than the test clock. For each test clock cycle only one out of the k outputs of each shift register is evaluated by the ATE. The impact of consecutive X values within the scan chains is reduced by a periodic permutation of the NF-MISR inputs. As a result, no additional external control signals or test set dependent control logic is required. The benefits of the proposed method are shown by the example of an implementation on a Verigy ATE. Experiments on three industrial circuits demonstrate the effectiveness of the proposed approach in comparison to a commercial DFT solution. Y1 - 2009 UR - http://www.springerlink.com/content/100286 U6 - https://doi.org/10.1007/s10836-009-5107-5 SN - 0923-8174 ER - TY - JOUR A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - A new self-testing parity checker for ultra-reliable applications Y1 - 1996 ER - TY - JOUR A1 - Tavakoli, Hamad A1 - Alirezazadeh, Pendar A1 - Hedayatipour, Ava A1 - Nasib, A. H. Banijamali A1 - Landwehr, Niels T1 - Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks JF - Computers and electronics in agriculture : COMPAG online ; an international journal N2 - In recent years, many efforts have been made to apply image processing techniques for plant leaf identification. However, categorizing leaf images at the cultivar/variety level, because of the very low inter-class variability, is still a challenging task. In this research, we propose an automatic discriminative method based on convolutional neural networks (CNNs) for classifying 12 different cultivars of common beans that belong to three various species. We show that employing advanced loss functions, such as Additive Angular Margin Loss and Large Margin Cosine Loss, instead of the standard softmax loss function for the classification can yield better discrimination between classes and thereby mitigate the problem of low inter-class variability. The method was evaluated by classifying species (level I), cultivars from the same species (level II), and cultivars from different species (level III), based on images from the leaf foreside and backside. The results indicate that the performance of the classification algorithm on the leaf backside image dataset is superior. The maximum mean classification accuracies of 95.86, 91.37 and 86.87% were obtained at the levels I, II and III, respectively. The proposed method outperforms the previous relevant works and provides a reliable approach for plant cultivars identification. KW - Bean KW - Plant identification KW - Digital image analysis KW - VGG16 KW - Loss KW - functions Y1 - 2021 U6 - https://doi.org/10.1016/j.compag.2020.105935 SN - 0168-1699 SN - 1872-7107 VL - 181 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Gerber, Stefan A1 - Gössel, Michael T1 - Detection of permanent faults of a floating point adder by pseudoduplication Y1 - 1994 ER - TY - JOUR A1 - Bhattacharya, M. K. A1 - Dimitriev, Alexej A1 - Gössel, Michael T1 - Zero-aliasing space compresion using a single periodic output and its application to testing of embedded Y1 - 2000 ER - TY - JOUR A1 - Dimitriev, Alexej A1 - Saposhnikov, V. V. A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael T1 - Concurrent checking of sequential circuits by alternating inputs Y1 - 1999 ER - TY - JOUR A1 - Kuentzer, Felipe A. A1 - Krstić, Miloš T1 - Soft error detection and correction architecture for asynchronous bundled data designs JF - IEEE transactions on circuits and systems N2 - In this paper, an asynchronous design for soft error detection and correction in combinational and sequential circuits is presented. The proposed architecture is called Asynchronous Full Error Detection and Correction (AFEDC). A custom design flow with integrated commercial EDA tools generates the AFEDC using the asynchronous bundled-data design style. The AFEDC relies on an Error Detection Circuit (EDC) for protecting the combinational logic and fault-tolerant latches for protecting the sequential logic. The EDC can be implemented using different detection methods. For this work, two boundary variants are considered, the Full Duplication with Comparison (FDC) and the Partial Duplication with Parity Prediction (PDPP). The AFEDC architecture can handle single events and timing faults of arbitrarily long duration as well as the synchronous FEDC, but additionally can address known metastability issues of the FEDC and other similar synchronous architectures and provide a more practical solution for handling the error recovery process. Two case studies are developed, a carry look-ahead adder and a pipelined non-restoring array divider. Results show that the AFEDC provides equivalent fault coverage when compared to the FEDC while reducing area, ranging from 9.6% to 17.6%, and increasing energy efficiency, which can be up to 6.5%. KW - circuit Faults KW - latches KW - Fault tolerance KW - Fault tolerant systems KW - timing KW - clocks KW - transient analysis KW - asynchrounous design KW - soft errors KW - transient Faults KW - bundled data KW - click controller KW - self-checking KW - concurrent checking KW - DMR KW - TMR Y1 - 2020 U6 - https://doi.org/10.1109/TCSI.2020.2998911 SN - 1549-8328 SN - 1558-0806 VL - 67 IS - 12 SP - 4883 EP - 4894 PB - Institute of Electrical and Electronics Engineers CY - New York ER - TY - JOUR A1 - Saposhnikov, Vl. V. A1 - Otscheretnij, Vitalij A1 - Saposhnikov, V. V. A1 - Gössel, Michael T1 - Design of Fault-Tolerant Circuits by self-dual Duplication Y1 - 1998 ER - TY - JOUR A1 - Moschanin, Wladimir A1 - Saposhnikov, Vl. V. A1 - Saposhnikov, Va. V. A1 - Gössel, Michael T1 - Synthesis of self-dual multi-output combinational circuits for on-line Teting Y1 - 1996 ER - TY - JOUR A1 - Seuring, Markus A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - Ein strukturelles Verfahren zur Kompaktierung von Schaltungsausgaben für online-Fehlererkennungen und Selbstests Y1 - 1998 ER - TY - JOUR A1 - Sogomonyan, Egor S. A1 - Gössel, Michael T1 - Concurrently self-testing embedded checkers for ultra-reliable fault-tolerant systems Y1 - 1996 ER - TY - JOUR A1 - Morosov, Andrej A1 - Gössel, Michael A1 - Hartje, Hendrik T1 - Reduced area overhead of the input party for code-disjoint circuits Y1 - 1999 ER - TY - JOUR A1 - Seuring, Markus A1 - Gössel, Michael T1 - A structural method for output compaction of sequential automata implemented as circuits Y1 - 1999 ER - TY - JOUR A1 - Hlawiczka, A. A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - A linear code-preserving signature analyzer COPMISR Y1 - 1997 SN - 0-8186-7810-0 ER - TY - JOUR A1 - Bogue, Ted A1 - Gössel, Michael A1 - Jürgensen, Helmut A1 - Zorian, Yervant T1 - Built-in self-Test with an alternating output Y1 - 1998 SN - 0-8186-8359-7 ER - TY - JOUR A1 - Otscheretnij, Vitalij A1 - Gössel, Michael A1 - Saposhnikov, Vl. V. A1 - Saposhnikov, V. V. T1 - Fault-tolerant self-dual circuits with error detection by parity- and group parity prediction Y1 - 1998 ER - TY - JOUR A1 - Sogomonyan, Egor S. A1 - Singh, Adit D. A1 - Gössel, Michael T1 - A multi-mode scannable memory element for high test application efficiency and delay testing Y1 - 1998 ER - TY - JOUR A1 - Dimitriev, Alexej A1 - Saposhnikov, Vl. V. A1 - Gössel, Michael A1 - Saposhnikov, V. V. T1 - Self-dual duplication - a new method for on-line testing Y1 - 1997 ER - TY - JOUR A1 - Saposhnikov, Vl. V. A1 - Moshanin, Vl. A1 - Saposhnikov, V. V. A1 - Gössel, Michael T1 - Self-dual multi output combinational circuits with output data compaction Y1 - 1997 ER - TY - JOUR A1 - Gössel, Michael A1 - Sogomonyan, Egor S. T1 - On-line Test auf der Grundlage eines die Parität erhaltenden Signaturanalysators Y1 - 1998 ER - TY - JOUR A1 - Morosov, Andrej A1 - Saposhnikov, V. V. A1 - Gössel, Michael T1 - Self-Checking circuits with unidiectionally independent outputs Y1 - 1998 ER - TY - JOUR A1 - Krstić, Miloš A1 - Weidling, Stefan A1 - Petrovic, Vladimir A1 - Sogomonyan, Egor S. T1 - Enhanced architectures for soft error detection and correction in combinational and sequential circuits JF - Microelectronics Reliability N2 - In this paper two new methods for the design of fault-tolerant pipelined sequential and combinational circuits, called Error Detection and Partial Error Correction (EDPEC) and Full Error Detection and Correction (FEDC), are described. The proposed methods are based on an Error Detection Logic (EDC) in the combinational circuit part combined with fault tolerant memory elements implemented using fault tolerant master–slave flip-flops. If a transient error, due to a transient fault in the combinational circuit part is detected by the EDC, the error signal controls the latching stage of the flip-flops such that the previous correct state of the register stage is retained until the transient error disappears. The system can continue to work in its previous correct state and no additional recovery procedure (with typically reduced clock frequency) is necessary. The target applications are dataflow processing blocks, for which software-based recovery methods cannot be easily applied. The presented architectures address both single events as well as timing faults of arbitrarily long duration. An example of this architecture is developed and described, based on the carry look-ahead adder. The timing conditions are carefully investigated and simulated up to the layout level. The enhancement of the baseline architecture is demonstrated with respect to the achieved fault tolerance for the single event and timing faults. It is observed that the number of uncorrected single events is reduced by the EDPEC architecture by 2.36 times compared with previous solution. The FEDC architecture further reduces the number of uncorrected events to zero and outperforms the Triple Modular Redundancy (TMR) with respect to correction of timing faults. The power overhead of both new architectures is about 26–28% lower than the TMR. Y1 - 2016 SN - 0026-2714 VL - 56 SP - 212 EP - 220 ER - TY - JOUR A1 - Schick, Daniel A1 - Bojahr, Andre A1 - Herzog, Marc A1 - Shayduk, Roman A1 - von Korff Schmising, Clemens A1 - Bargheer, Matias T1 - Udkm1Dsim-A simulation toolkit for 1D ultrafast dynamics in condensed matter JF - Computer physics communications : an international journal devoted to computational physics and computer programs in physics N2 - The UDKM1DSIM toolbox is a collection of MATLAB (MathWorks Inc.) classes and routines to simulate the structural dynamics and the according X-ray diffraction response in one-dimensional crystalline sample structures upon an arbitrary time-dependent external stimulus, e.g. an ultrashort laser pulse. The toolbox provides the capabilities to define arbitrary layered structures on the atomic level including a rich database of corresponding element-specific physical properties. The excitation of ultrafast dynamics is represented by an N-temperature model which is commonly applied for ultrafast optical excitations. Structural dynamics due to thermal stress are calculated by a linear-chain model of masses and springs. The resulting X-ray diffraction response is computed by dynamical X-ray theory. The UDKM1DSIM toolbox is highly modular and allows for introducing user-defined results at any step in the simulation procedure. Program summary Program title: udkm1Dsim Catalogue identifier: AERH_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERH_v1_0.html Licensing provisions: BSD No. of lines in distributed program, including test data, etc.: 130221 No. of bytes in distributed program, including test data, etc.: 2746036 Distribution format: tar.gz Programming language: Matlab (MathWorks Inc.). Computer: PC/Workstation. Operating system: Running Matlab installation required (tested on MS Win XP -7, Ubuntu Linux 11.04-13.04). Has the code been vectorized or parallelized?: Parallelization for dynamical XRD computations. Number of processors used: 1-12 for Matlab Parallel Computing Toolbox; 1 - infinity for Matlab Distributed Computing Toolbox External routines: Optional: Matlab Parallel Computing Toolbox, Matlab Distributed Computing Toolbox Required (included in the package): mtimesx Fast Matrix Multiply for Matlab by James Tursa, xml io tools by Jaroslaw Tuszynski, textprogressbar by Paul Proteus Nature of problem: Simulate the lattice dynamics of 1D crystalline sample structures due to an ultrafast excitation including thermal transport and compute the corresponding transient X-ray diffraction pattern. Solution method: Restrictions: The program is restricted to 1D sample structures and is further limited to longitudinal acoustic phonon modes and symmetrical X-ray diffraction geometries. Unusual features: The program is highly modular and allows the inclusion of user-defined inputs at any time of the simulation procedure. Running time: The running time is highly dependent on the number of unit cells in the sample structure and other simulation parameters such as time span or angular grid for X-ray diffraction computations. However, the example files are computed in approx. 1-5 min each on a 8 Core Processor with 16 GB RAM available. KW - Ultrafast dynamics KW - Heat diffusion KW - N-temperature model KW - Coherent phonons KW - Incoherent phonons KW - Thermoelasticity KW - Dynamical X-ray theory Y1 - 2014 U6 - https://doi.org/10.1016/j.cpc.2013.10.009 SN - 0010-4655 SN - 1879-2944 VL - 185 IS - 2 SP - 651 EP - 660 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandiño, Jorge A1 - Fariñas del Cerro, Luis T1 - Splitting epistemic logic programs JF - Theory and practice of logic programming / publ. for the Association for Logic Programming N2 - Epistemic logic programs constitute an extension of the stable model semantics to deal with new constructs called subjective literals. Informally speaking, a subjective literal allows checking whether some objective literal is true in all or some stable models. As it can be imagined, the associated semantics has proved to be non-trivial, since the truth of subjective literals may interfere with the set of stable models it is supposed to query. As a consequence, no clear agreement has been reached and different semantic proposals have been made in the literature. Unfortunately, comparison among these proposals has been limited to a study of their effect on individual examples, rather than identifying general properties to be checked. In this paper, we propose an extension of the well-known splitting property for logic programs to the epistemic case. We formally define when an arbitrary semantics satisfies the epistemic splitting property and examine some of the consequences that can be derived from that, including its relation to conformant planning and to epistemic constraints. Interestingly, we prove (through counterexamples) that most of the existing approaches fail to fulfill the epistemic splitting property, except the original semantics proposed by Gelfond 1991 and a recent proposal by the authors, called Founded Autoepistemic Equilibrium Logic. KW - knowledge representation and nonmonotonic reasoning KW - logic programming methodology and applications KW - theory Y1 - 2021 U6 - https://doi.org/10.1017/S1471068420000058 SN - 1471-0684 SN - 1475-3081 VL - 21 IS - 3 SP - 296 EP - 316 PB - Cambridge Univ. Press CY - Cambridge [u.a.] ER - TY - JOUR A1 - Fandiño, Jorge A1 - Lifschitz, Vladimir A1 - Lühne, Patrick A1 - Schaub, Torsten H. T1 - Verifying tight logic programs with Anthem and Vampire JF - Theory and practice of logic programming N2 - This paper continues the line of research aimed at investigating the relationship between logic programs and first-order theories. We extend the definition of program completion to programs with input and output in a subset of the input language of the ASP grounder gringo, study the relationship between stable models and completion in this context, and describe preliminary experiments with the use of two software tools, anthem and vampire, for verifying the correctness of programs with input and output. Proofs of theorems are based on a lemma that relates the semantics of programs studied in this paper to stable models of first-order formulas. Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000344 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 735 EP - 750 PB - Cambridge Univ. Press CY - Cambridge [u.a.] ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandiño, Jorge A1 - Garea, Javier A1 - Romero, Javier A1 - Schaub, Torsten H. T1 - Eclingo BT - a solver for epistemic logic programs JF - Theory and practice of logic programming N2 - We describe eclingo, a solver for epistemic logic programs under Gelfond 1991 semantics built upon the Answer Set Programming system clingo. The input language of eclingo uses the syntax extension capabilities of clingo to define subjective literals that, as usual in epistemic logic programs, allow for checking the truth of a regular literal in all or in some of the answer sets of a program. The eclingo solving process follows a guess and check strategy. It first generates potential truth values for subjective literals and, in a second step, it checks the obtained result with respect to the cautious and brave consequences of the program. This process is implemented using the multi-shot functionalities of clingo. We have also implemented some optimisations, aiming at reducing the search space and, therefore, increasing eclingo 's efficiency in some scenarios. Finally, we compare the efficiency of eclingo with two state-of-the-art solvers for epistemic logic programs on a pair of benchmark scenarios and show that eclingo generally outperforms their obtained results. KW - Answer Set Programming KW - Epistemic Logic Programs KW - Non-Monotonic KW - Reasoning KW - Conformant Planning Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000228 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 6 SP - 834 EP - 847 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Roessner, Ute A1 - Luedemann, A. A1 - Brust, D. A1 - Fiehn, Oliver A1 - Linke, Thomas A1 - Willmitzer, Lothar A1 - Fernie, Alisdair R. T1 - Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems Y1 - 2001 SN - 1040-4651 ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandiño, Jorge A1 - Schaub, Torsten H. A1 - Schellhorn, Sebastian T1 - Gelfond-Zhang aggregates as propositional formulas JF - Artificial intelligence N2 - Answer Set Programming (ASP) has become a popular and widespread paradigm for practical Knowledge Representation thanks to its expressiveness and the available enhancements of its input language. One of such enhancements is the use of aggregates, for which different semantic proposals have been made. In this paper, we show that any ASP aggregate interpreted under Gelfond and Zhang's (GZ) semantics can be replaced (under strong equivalence) by a propositional formula. Restricted to the original GZ syntax, the resulting formula is reducible to a disjunction of conjunctions of literals but the formulation is still applicable even when the syntax is extended to allow for arbitrary formulas (including nested aggregates) in the condition. Once GZ-aggregates are represented as formulas, we establish a formal comparison (in terms of the logic of Here-and-There) to Ferraris' (F) aggregates, which are defined by a different formula translation involving nested implications. In particular, we prove that if we replace an F-aggregate by a GZ-aggregate in a rule head, we do not lose answer sets (although more can be gained). This extends the previously known result that the opposite happens in rule bodies, i.e., replacing a GZ-aggregate by an F-aggregate in the body may yield more answer sets. Finally, we characterize a class of aggregates for which GZ- and F-semantics coincide. KW - Aggregates KW - Answer Set Programming Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2018.10.007 SN - 0004-3702 SN - 1872-7921 VL - 274 SP - 26 EP - 43 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Aguado, Felicidad A1 - Cabalar, Pedro A1 - Fandiño, Jorge A1 - Pearce, David A1 - Perez, Gilberto A1 - Vidal, Concepcion T1 - Forgetting auxiliary atoms in forks JF - Artificial intelligence N2 - In this work we tackle the problem of checking strong equivalence of logic programs that may contain local auxiliary atoms, to be removed from their stable models and to be forbidden in any external context. We call this property projective strong equivalence (PSE). It has been recently proved that not any logic program containing auxiliary atoms can be reformulated, under PSE, as another logic program or formula without them – this is known as strongly persistent forgetting. In this paper, we introduce a conservative extension of Equilibrium Logic and its monotonic basis, the logic of Here-and-There, in which we deal with a new connective ‘|’ we call fork. We provide a semantic characterisation of PSE for forks and use it to show that, in this extension, it is always possible to forget auxiliary atoms under strong persistence. We further define when the obtained fork is representable as a regular formula. KW - Answer set programming KW - Non-monotonic reasoning KW - Equilibrium logic KW - Denotational semantics KW - Forgetting KW - Strong equivalence Y1 - 2019 U6 - https://doi.org/10.1016/j.artint.2019.07.005 SN - 0004-3702 SN - 1872-7921 VL - 275 SP - 575 EP - 601 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Aguado, Felicidad A1 - Cabalar, Pedro A1 - Fandiño, Jorge A1 - Pearce, David A1 - Perez, Gilberto A1 - Vidal-Peracho, Concepcion T1 - Revisiting Explicit Negation in Answer Set Programming JF - Theory and practice of logic programming KW - Answer set programming KW - Non-monotonic reasoning KW - Equilibrium logic KW - Explicit negation Y1 - 2019 U6 - https://doi.org/10.1017/S1471068419000267 SN - 1471-0684 SN - 1475-3081 VL - 19 IS - 5-6 SP - 908 EP - 924 PB - Cambridge Univ. Press CY - New York ER -