TY - THES A1 - Schrape, Oliver T1 - Methodology for standard cell-based design and implementation of reliable and robust hardware systems T1 - Methoden für Standardzellbasiertes Design und Implementierung zuverlässiger und robuster Hardware Systeme N2 - Reliable and robust data processing is one of the hardest requirements for systems in fields such as medicine, security, automotive, aviation, and space, to prevent critical system failures caused by changes in operating or environmental conditions. In particular, Signal Integrity (SI) effects such as crosstalk may distort the signal information in sensitive mixed-signal designs. A challenge for hardware systems used in the space are radiation effects. Namely, Single Event Effects (SEEs) induced by high-energy particle hits may lead to faulty computation, corrupted configuration settings, undesired system behavior, or even total malfunction. Since these applications require an extra effort in design and implementation, it is beneficial to master the standard cell design process and corresponding design flow methodologies optimized for such challenges. Especially for reliable, low-noise differential signaling logic such as Current Mode Logic (CML), a digital design flow is an orthogonal approach compared to traditional manual design. As a consequence, mandatory preliminary considerations need to be addressed in more detail. First of all, standard cell library concepts with suitable cell extensions for reliable systems and robust space applications have to be elaborated. Resulting design concepts at the cell level should enable the logical synthesis for differential logic design or improve the radiation-hardness. In parallel, the main objectives of the proposed cell architectures are to reduce the occupied area, power, and delay overhead. Second, a special setup for standard cell characterization is additionally required for a proper and accurate logic gate modeling. Last but not least, design methodologies for mandatory design flow stages such as logic synthesis and place and route need to be developed for the respective hardware systems to keep the reliability or the radiation-hardness at an acceptable level. This Thesis proposes and investigates standard cell-based design methodologies and techniques for reliable and robust hardware systems implemented in a conventional semi-conductor technology. The focus of this work is on reliable differential logic design and robust radiation-hardening-by-design circuits. The synergistic connections of the digital design flow stages are systematically addressed for these two types of hardware systems. In more detail, a library for differential logic is extended with single-ended pseudo-gates for intermediate design steps to support the logic synthesis and layout generation with commercial Computer-Aided Design (CAD) tools. Special cell layouts are proposed to relax signal routing. A library set for space applications is similarly extended by novel Radiation-Hardening-by-Design (RHBD) Triple Modular Redundancy (TMR) cells, enabling a one fault correction. Therein, additional optimized architectures for glitch filter cells, robust scannable and self-correcting flip-flops, and clock-gates are proposed. The circuit concepts and the physical layout representation views of the differential logic gates and the RHBD cells are discussed. However, the quality of results of designs depends implicitly on the accuracy of the standard cell characterization which is examined for both types therefore. The entire design flow is elaborated from the hardware design description to the layout representations. A 2-Phase routing approach together with an intermediate design conversion step is proposed after the initial place and route stage for reliable, pure differential designs, whereas a special constraining for RHBD applications in a standard technology is presented. The digital design flow for differential logic design is successfully demonstrated on a reliable differential bipolar CML application. A balanced routing result of its differential signal pairs is obtained by the proposed 2-Phase-routing approach. Moreover, the elaborated standard cell concepts and design methodology for RHBD circuits are applied to the digital part of a 7.5-15.5 MSPS 14-bit Analog-to-Digital Converter (ADC) and a complex microcontroller architecture. The ADC is implemented in an unhardened standard semiconductor technology and successfully verified by electrical measurements. The overhead of the proposed hardening approach is additionally evaluated by design exploration of the microcontroller application. Furthermore, the first obtained related measurement results of novel RHBD-∆TMR flip-flops show a radiation-tolerance up to a threshold Linear Energy Transfer (LET) of 46.1, 52.0, and 62.5 MeV cm2 mg-1 and savings in silicon area of 25-50 % for selected TMR standard cell candidates. As a conclusion, the presented design concepts at the cell and library levels, as well as the design flow modifications are adaptable and transferable to other technology nodes. In particular, the design of hybrid solutions with integrated reliable differential logic modules together with robust radiation-tolerant circuit parts is enabled by the standard cell concepts and design methods proposed in this work. N2 - Eine zuverlässige und robuste Datenverarbeitung ist eine der wichtigsten Voraussetzungen für Systeme in Bereichen wie Medizin, Sicherheit, Automobilbau, Luft- und Raumfahrt, um kritische Systemausfälle zu verhindern, welche durch Änderungen der Betriebsbedingung oder Umweltgegebenheiten hervorgerufen werden können. Insbesondere Signalintegritätseffekte (Signal Integrity (SI)) wie das Übersprechen und Überlagern von Signalen (crosstalk) können den Informationsgehalt in empfindlichen Mixed-Signal-Designs verzerren. Eine zusätzliche Herausforderung für Hardwaresysteme für Weltraumanwendungen ist die Strahlung. Resultierende Effekte, die durch hochenergetische Teilchentreffer ausgelöst werden (Single Event Effects (SEEs)), können zu fehlerhaften Berechnungen, beschädigten Konfigurationseinstellungen, unerwünschtem Systemverhalten oder sogar zu völliger Fehlfunktion führen. Da diese Anwendungen einen zusätzlichen Aufwand beim Entwurf und der Implementierung erfordern, ist es von Vorteil, über Standardzellenentwurfskonzepte und entsprechende Entwurfsablaufmethoden zu verfügen, die für genau solche Herausforderungen optimiert sind. Insbesondere für zuverlässige, rauscharme differenzielle Logik, wie der Current Mode Logic (CML), ist ein digitaler Entwurfsablauf ein orthogonaler Ansatz im Vergleich zum traditionellen manuellen Entwurfskonzept. Infolgedessen müssen obligatorische Vorüberlegungen detaillierter behandelt werden. Zunächst sind Konzepte für Standardzellbibliotheken mit geeigneten Zellerweiterungen für zuverlässige Systeme und robuste Raumfahrtanwendungen zu erarbeiten. Daraus resultierende Entwurfskonzepte auf Zellebene sollten die logische Synthese für den differenziellen Logikentwurf ermöglichen oder die Strahlungshärte eines Designs verbessern. Parallel dazu sind die Hauptziele der vorgeschlagenen Zellarchitekturen, die Verringerung der genutzten Siliziumfläche und der Verlustleistung sowie den Verzögerungs-Overhead zu minimieren. Zweitens ist ein spezieller Aufbau für die Charakterisierung von Standardzellen erforderlich, um eine angemessene und genaue Modellierung der Logikgatter zu ermöglichen. Nicht zuletzt müssen für die jeweiligen Hardwaresysteme Methoden für die Entwurfsphasen wie Logik-Synthese und das Platzieren und Routen (Place and Route (PnR)) entwickelt werden, um die Zuverlässigkeit beziehungsweise die Strahlungshärte auf einem akzeptablen Niveau zu halten. In dieser Arbeit werden standardisierte Zellen-basierte Entwurfsmethoden und -techniken für zuverlässige und robuste Hardwaresysteme vorgeschlagen und untersucht, welche in einer herkömmlichen Halbleitertechnologie implementiert werden. Dabei werden zuverlässige differenzielle Logikschaltungen und robuste strahlungsgehärtete Schaltungen betrachtet. Die synergetischen Verbindungen des digitalen Entwurfs werden systematisch für diese beiden Hardwaresysteme behandelt. Im Detail wird eine Bibliothek für differentielle Logik mit Single-Ended-Pseudo-Gattern für Zwischenschritte erweitert, die die Logiksynthese und Layout-Generierung mit heutigen Entwicklungswerkzeugen unterstützen. Ein spezieller Rahmen für das Layout der Zellen wird vorgeschlagen, um das Routing der Signale zu vereinfachen. Die Bibliothek für Raumfahrtanwendungen wird in ähnlicher Weise um neuartige Radiation-Hardening-by-Design (RHBD)-Zellen mit dreifacher modularer Redundanz (Triple Modular Redundancy (TMR)) erweitert, welche eine 1-Bit-Fehlerkorrektur erlaubt. Zusätzlich werden optimierte Architekturen für Glitch-Filterzellen, robuste abtastbare (scannable) und selbstkorrigierende Flip-flops und Taktgatter (clock-gates) vorgeschlagen. Die Schaltungskonzepte, die physische Layout-Repräsentation der differentiellen Logikgatter und der vorgeschlagenen RHBD-Zellen werden diskutiert. Die Qualität der Ergebnisse der Entwürfe hängt jedoch implizit von der Genauigkeit der Standardzellencharakterisierung ab, die daher für beide Typen untersucht wird. Der gesamte Entwurfsablauf wird von der Entwurfsbeschreibung der Hardware bis hin zur generierten Layout-Darstellung ausgearbeitet. Infolgedessen wird ein 2-Phasen-Routing-Ansatz zusammen mit einem zwischengeschalteten Design-Konvertierungsschritt nach der initialen PnR-Phase für zuverlässige, differentielle Designs vorgeschlagen, während ein spezielles Constraining für RHBD-Anwendungen vorgestellt wird. Der digitale Entwurfsablauf für Differenziallogik wird erfolgreich an einer zuverlässigen bipolaren Differenzial-CML-Anwendung demonstriert. Durch den 2-Phasen-Routing-Ansatz wird ein ausgewogenes Routing-Ergebnis differentieller Signalpaare erzielt. Darüber hinaus werden die erarbeiteten Standardzellenkonzepte und die Entwurfsmethodik für RHBD-Schaltungen auf den digitalen Teil eines 7.5-15.5MSPS 14-bit Analog-Digital-Wandlers (ADC) und einer komplexen Mikrocontroller-Architektur angewandt. Der ADC wurde in einer nicht-gehärteten Standard-Halbleitertechnologie implementiert und erfolgreich durch elektrische Messungen verifiziert. Der Mehraufwand des Härtungsansatzes wird zusätzlich durch Design Exploration der Mikrocontroller-Anwendung bewertet. Ferner zeigen erste Messergebnisse der neuartigen RHBD-ΔTMR-Flip-flops eine Strahlungstoleranz bis zu einem linearen Energietransfer (Linear Energy Transfers (LET)) Schwellwert von 46.1, 52.0 und 62.5MeVcm2 mg-1 und eine Einsparung an Siliziumfläche von 25-50% für ausgewählte TMR-Standardzellenkandidaten. Die vorgestellten Entwurfskonzepte auf Zell- und Bibliotheksebene sowie die Änderungen des Entwurfsablaufs sind anpassbar und übertragbar auf andere Technologieknoten. Insbesondere der Entwurf hybrider Lösungen mit integrierten zuverlässigen differenziellen Logikmodulen zusammen mit robusten strahlungstoleranten Schaltungsteilen wird durch die in dieser Arbeit vorgeschlagenen Konzepte und Entwurfsmethoden ermöglicht. KW - hardware design KW - ASIC KW - radiation hardness KW - digital design KW - ASIC (Applikationsspezifische Integrierte Schaltkreise) KW - Digital Design KW - Hardware Design KW - Strahlungshartes Design Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589326 ER - TY - THES A1 - Chen, Junchao T1 - A self-adaptive resilient method for implementing and managing the high-reliability processing system T1 - Eine selbstadaptive belastbare Methode zum Implementieren und Verwalten von hochzuverlässigen Verarbeitungssysteme N2 - As a result of CMOS scaling, radiation-induced Single-Event Effects (SEEs) in electronic circuits became a critical reliability issue for modern Integrated Circuits (ICs) operating under harsh radiation conditions. SEEs can be triggered in combinational or sequential logic by the impact of high-energy particles, leading to destructive or non-destructive faults, resulting in data corruption or even system failure. Typically, the SEE mitigation methods are deployed statically in processing architectures based on the worst-case radiation conditions, which is most of the time unnecessary and results in a resource overhead. Moreover, the space radiation conditions are dynamically changing, especially during Solar Particle Events (SPEs). The intensity of space radiation can differ over five orders of magnitude within a few hours or days, resulting in several orders of magnitude fault probability variation in ICs during SPEs. This thesis introduces a comprehensive approach for designing a self-adaptive fault resilient multiprocessing system to overcome the static mitigation overhead issue. This work mainly addresses the following topics: (1) Design of on-chip radiation particle monitor for real-time radiation environment detection, (2) Investigation of space environment predictor, as support for solar particle events forecast, (3) Dynamic mode configuration in the resilient multiprocessing system. Therefore, according to detected and predicted in-flight space radiation conditions, the target system can be configured to use no mitigation or low-overhead mitigation during non-critical periods of time. The redundant resources can be used to improve system performance or save power. On the other hand, during increased radiation activity periods, such as SPEs, the mitigation methods can be dynamically configured appropriately depending on the real-time space radiation environment, resulting in higher system reliability. Thus, a dynamic trade-off in the target system between reliability, performance and power consumption in real-time can be achieved. All results of this work are evaluated in a highly reliable quad-core multiprocessing system that allows the self-adaptive setting of optimal radiation mitigation mechanisms during run-time. Proposed methods can serve as a basis for establishing a comprehensive self-adaptive resilient system design process. Successful implementation of the proposed design in the quad-core multiprocessor shows its application perspective also in the other designs. N2 - Infolge der CMOS-Skalierung wurden strahleninduzierte Einzelereignis-Effekte (SEEs) in elektronischen Schaltungen zu einem kritischen Zuverlässigkeitsproblem für moderne integrierte Schaltungen (ICs), die unter rauen Strahlungsbedingungen arbeiten. SEEs können in der kombinatorischen oder sequentiellen Logik durch den Aufprall hochenergetischer Teilchen ausgelöst werden, was zu destruktiven oder nicht-destruktiven Fehlern und damit zu Datenverfälschungen oder sogar Systemausfällen führt. Normalerweise werden die Methoden zur Abschwächung von SEEs statisch in Verarbeitungsarchitekturen auf der Grundlage der ungünstigsten Strahlungsbedingungen eingesetzt, was in den meisten Fällen unnötig ist und zu einem Ressourcen-Overhead führt. Darüber hinaus ändern sich die Strahlungsbedingungen im Weltraum dynamisch, insbesondere während Solar Particle Events (SPEs). Die Intensität der Weltraumstrahlung kann sich innerhalb weniger Stunden oder Tage um mehr als fünf Größenordnungen ändern, was zu einer Variation der Fehlerwahrscheinlichkeit in ICs während SPEs um mehrere Größenordnungen führt. In dieser Arbeit wird ein umfassender Ansatz für den Entwurf eines selbstanpassenden, fehlerresistenten Multiprozessorsystems vorgestellt, um das Problem des statischen Mitigation-Overheads zu überwinden. Diese Arbeit befasst sich hauptsächlich mit den folgenden Themen: (1) Entwurf eines On-Chip-Strahlungsteilchen Monitors zur Echtzeit-Erkennung von Strahlung Umgebungen, (2) Untersuchung von Weltraumumgebungsprognosen zur Unterstützung der Vorhersage von solaren Teilchen Ereignissen, (3) Konfiguration des dynamischen Modus in einem belastbaren Multiprozessorsystem. Daher kann das Zielsystem je nach den erkannten und vorhergesagten Strahlungsbedingungen während des Fluges so konfiguriert werden, dass es während unkritischer Zeiträume keine oder nur eine geringe Strahlungsminderung vornimmt. Die redundanten Ressourcen können genutzt werden, um die Systemleistung zu verbessern oder Energie zu sparen. In Zeiten erhöhter Strahlungsaktivität, wie z. B. während SPEs, können die Abschwächungsmethoden dynamisch und in Abhängigkeit von der Echtzeit-Strahlungsumgebung im Weltraum konfiguriert werden, was zu einer höheren Systemzuverlässigkeit führt. Auf diese Weise kann im Zielsystem ein dynamischer Kompromiss zwischen Zuverlässigkeit, Leistung und Stromverbrauch in Echtzeit erreicht werden. Alle Ergebnisse dieser Arbeit wurden in einem hochzuverlässigen Quad-Core-Multiprozessorsystem evaluiert, das die selbstanpassende Einstellung optimaler Strahlungsschutzmechanismen während der Laufzeit ermöglicht. Die vorgeschlagenen Methoden können als Grundlage für die Entwicklung eines umfassenden, selbstanpassenden und belastbaren Systementwurfsprozesses dienen. Die erfolgreiche Implementierung des vorgeschlagenen Entwurfs in einem Quad-Core-Multiprozessor zeigt, dass er auch für andere Entwürfe geeignet ist. KW - single event upset KW - solar particle event KW - machine learning KW - self-adaptive multiprocessing system KW - maschinelles Lernen KW - selbstanpassendes Multiprozessorsystem KW - strahleninduzierte Einzelereignis-Effekte KW - Sonnenteilchen-Ereignis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-583139 ER - TY - JOUR A1 - Möring, Sebastian A1 - Leino, Olli Tapio T1 - Die neoliberale Bedingung von Computerspielen JF - Kontrollmaschinen - zur Dispositivtheorie des Computerspiels Y1 - 2022 SN - 978-3-643-14780-6 SP - 41 EP - 61 PB - LiteraturWissenschaft.de CY - Münster ER - TY - JOUR A1 - Prasse, Paul A1 - Iversen, Pascal A1 - Lienhard, Matthias A1 - Thedinga, Kristina A1 - Herwig, Ralf A1 - Scheffer, Tobias T1 - Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction JF - MDPI N2 - Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models’ accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases. KW - deep neural networks KW - drug-sensitivity prediction KW - anti-cancer drugs Y1 - 2022 U6 - https://doi.org/10.3390/cancers14163950 SN - 2072-6694 VL - 14 SP - 1 EP - 14 PB - MDPI CY - Basel, Schweiz ET - 16 ER - TY - JOUR A1 - Hecher, Markus T1 - Treewidth-aware reductions of normal ASP to SAT BT - is normal ASP harder than SAT after all? JF - Artificial intelligence N2 - Answer Set Programming (ASP) is a paradigm for modeling and solving problems for knowledge representation and reasoning. There are plenty of results dedicated to studying the hardness of (fragments of) ASP. So far, these studies resulted in characterizations in terms of computational complexity as well as in fine-grained insights presented in form of dichotomy-style results, lower bounds when translating to other formalisms like propositional satisfiability (SAT), and even detailed parameterized complexity landscapes. A generic parameter in parameterized complexity originating from graph theory is the socalled treewidth, which in a sense captures structural density of a program. Recently, there was an increase in the number of treewidth-based solvers related to SAT. While there are translations from (normal) ASP to SAT, no reduction that preserves treewidth or at least keeps track of the treewidth increase is known. In this paper we propose a novel reduction from normal ASP to SAT that is aware of the treewidth, and guarantees that a slight increase of treewidth is indeed sufficient. Further, we show a new result establishing that, when considering treewidth, already the fragment of normal ASP is slightly harder than SAT (under reasonable assumptions in computational complexity). This also confirms that our reduction probably cannot be significantly improved and that the slight increase of treewidth is unavoidable. Finally, we present an empirical study of our novel reduction from normal ASP to SAT, where we compare treewidth upper bounds that are obtained via known decomposition heuristics. Overall, our reduction works better with these heuristics than existing translations. (c) 2021 Elsevier B.V. All rights reserved. KW - Answer set programming KW - Treewidth KW - Parameterized complexity KW - Complexity KW - analysis KW - Tree decomposition KW - Treewidth-aware reductions Y1 - 2022 U6 - https://doi.org/10.1016/j.artint.2021.103651 SN - 0004-3702 SN - 1872-7921 VL - 304 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Al Laban, Firas A1 - Reger, Martin A1 - Lucke, Ulrike T1 - Closing the Policy Gap in the Academic Bridge JF - Education sciences N2 - The highly structured nature of the educational sector demands effective policy mechanisms close to the needs of the field. That is why evidence-based policy making, endorsed by the European Commission under Erasmus+ Key Action 3, aims to make an alignment between the domains of policy and practice. Against this background, this article addresses two issues: First, that there is a vertical gap in the translation of higher-level policies to local strategies and regulations. Second, that there is a horizontal gap between educational domains regarding the policy awareness of individual players. This was analyzed in quantitative and qualitative studies with domain experts from the fields of virtual mobility and teacher training. From our findings, we argue that the combination of both gaps puts the academic bridge from secondary to tertiary education at risk, including the associated knowledge proficiency levels. We discuss the role of digitalization in the academic bridge by asking the question: which value does the involved stakeholders expect from educational policies? As a theoretical basis, we rely on the model of value co-creation for and by stakeholders. We describe the used instruments along with the obtained results and proposed benefits. Moreover, we reflect on the methodology applied, and we finally derive recommendations for future academic bridge policies. KW - policy evaluation KW - higher education KW - virtual mobility KW - teacher training Y1 - 2022 U6 - https://doi.org/10.3390/educsci12120930 SN - 2227-7102 VL - 12 IS - 12 PB - MDPI CY - Basel ER - TY - THES A1 - Böken, Björn T1 - Improving prediction accuracy using dynamic information N2 - Accurately solving classification problems nowadays is likely to be the most relevant machine learning task. Binary classification separating two classes only is algorithmically simpler but has fewer potential applications as many real-world problems are multi-class. On the reverse, separating only a subset of classes simplifies the classification task. Even though existing multi-class machine learning algorithms are very flexible regarding the number of classes, they assume that the target set Y is fixed and cannot be restricted once the training is finished. On the other hand, existing state-of-the-art production environments are becoming increasingly interconnected with the advance of Industry 4.0 and related technologies such that additional information can simplify the respective classification problems. In light of this, the main aim of this thesis is to introduce dynamic classification that generalizes multi-class classification such that the target class set can be restricted arbitrarily to a non-empty class subset M of Y at any time between two consecutive predictions. This task is solved by a combination of two algorithmic approaches. First, classifier calibration, which transforms predictions into posterior probability estimates that are intended to be well calibrated. The analysis provided focuses on monotonic calibration and in particular corrects wrong statements that appeared in the literature. It also reveals that bin-based evaluation metrics, which became popular in recent years, are unjustified and should not be used at all. Next, the validity of Platt scaling, which is the most relevant parametric calibration approach, is analyzed in depth. In particular, its optimality for classifier predictions distributed according to four different families of probability distributions as well its equivalence with Beta calibration up to a sigmoidal preprocessing are proven. For non-monotonic calibration, extended variants on kernel density estimation and the ensemble method EKDE are introduced. Finally, the calibration techniques are evaluated using a simulation study with complete information as well as on a selection of 46 real-world data sets. Building on this, classifier calibration is applied as part of decomposition-based classification that aims to reduce multi-class problems to simpler (usually binary) prediction tasks. For the involved fusing step performed at prediction time, a new approach based on evidence theory is presented that uses classifier calibration to model mass functions. This allows the analysis of decomposition-based classification against a strictly formal background and to prove closed-form equations for the overall combinations. Furthermore, the same formalism leads to a consistent integration of dynamic class information, yielding a theoretically justified and computationally tractable dynamic classification model. The insights gained from this modeling are combined with pairwise coupling, which is one of the most relevant reduction-based classification approaches, such that all individual predictions are combined with a weight. This not only generalizes existing works on pairwise coupling but also enables the integration of dynamic class information. Lastly, a thorough empirical study is performed that compares all newly introduced approaches to existing state-of-the-art techniques. For this, evaluation metrics for dynamic classification are introduced that depend on corresponding sampling strategies. Thereafter, these are applied during a three-part evaluation. First, support vector machines and random forests are applied on 26 data sets from the UCI Machine Learning Repository. Second, two state-of-the-art deep neural networks are evaluated on five benchmark data sets from a relatively recent reference work. Here, computationally feasible strategies to apply the presented algorithms in combination with large-scale models are particularly relevant because a naive application is computationally intractable. Finally, reference data from a real-world process allowing the inclusion of dynamic class information are collected and evaluated. The results show that in combination with support vector machines and random forests, pairwise coupling approaches yield the best results, while in combination with deep neural networks, differences between the different approaches are mostly small to negligible. Most importantly, all results empirically confirm that dynamic classification succeeds in improving the respective prediction accuracies. Therefore, it is crucial to pass dynamic class information in respective applications, which requires an appropriate digital infrastructure. N2 - Klassifikationsprobleme akkurat zu lösen ist heutzutage wahrscheinlich die relevanteste Machine-Learning-Aufgabe. Binäre Klassifikation zur Unterscheidung von nur zwei Klassen ist algorithmisch einfacher, hat aber weniger potenzielle Anwendungen, da in der Praxis oft Mehrklassenprobleme auftreten. Demgegenüber vereinfacht die Unterscheidung nur innerhalb einer Untermenge von Klassen die Problemstellung. Obwohl viele existierende Machine-Learning-Algorithmen sehr flexibel mit Blick auf die Anzahl der Klassen sind, setzen sie voraus, dass die Zielmenge Y fest ist und nicht mehr eingeschränkt werden kann, sobald das Training abgeschlossen ist. Allerdings sind moderne Produktionsumgebungen mit dem Voranschreiten von Industrie 4.0 und entsprechenden Technologien zunehmend digital verbunden, sodass zusätzliche Informationen die entsprechenden Klassifikationsprobleme vereinfachen können. Vor diesem Hintergrund ist das Hauptziel dieser Arbeit, dynamische Klassifikation als Verallgemeinerung von Mehrklassen-Klassifikation einzuführen, bei der die Zielmenge jederzeit zwischen zwei aufeinanderfolgenden Vorhersagen zu einer beliebigen, nicht leeren Teilmenge eingeschränkt werden kann. Diese Aufgabe wird durch die Kombination von zwei algorithmischen Ansätzen gelöst. Zunächst wird Klassifikator-Kalibrierung eingesetzt, mittels der Vorhersagen in Schätzungen der A-Posteriori-Wahrscheinlichkeiten transformiert werden, die gut kalibriert sein sollen. Die durchgeführte Analyse zielt auf monotone Kalibrierung ab und korrigiert insbesondere Falschaussagen, die in Referenzarbeiten veröffentlicht wurden. Außerdem zeigt sie, dass Bin-basierte Fehlermaße, die in den letzten Jahren populär geworden sind, ungerechtfertigt sind und nicht verwendet werden sollten. Weiterhin wird die Validität von Platt Scaling, dem relevantesten, parametrischen Kalibrierungsverfahren, genau analysiert. Insbesondere wird seine Optimalität für Klassifikatorvorhersagen, die gemäß vier Familien von Verteilungsfunktionen verteilt sind, sowie die Äquivalenz zu Beta-Kalibrierung bis auf eine sigmoidale Vorverarbeitung gezeigt. Für nicht monotone Kalibrierung werden erweiterte Varianten der Kerndichteschätzung und die Ensemblemethode EKDE eingeführt. Schließlich werden die Kalibrierungsverfahren im Rahmen einer Simulationsstudie mit vollständiger Information sowie auf 46 Referenzdatensätzen ausgewertet. Hierauf aufbauend wird Klassifikator-Kalibrierung als Teil von reduktionsbasierter Klassifikation eingesetzt, die zum Ziel hat, Mehrklassenprobleme auf einfachere (üblicherweise binäre) Entscheidungsprobleme zu reduzieren. Für den zugehörigen, während der Vorhersage notwendigen Fusionsschritt wird ein neuer, auf Evidenztheorie basierender Ansatz eingeführt, der Klassifikator-Kalibrierung zur Modellierung von Massefunktionen nutzt. Dies ermöglicht die Analyse von reduktionsbasierter Klassifikation in einem formalen Kontext sowie geschlossene Ausdrücke für die entsprechenden Gesamtkombinationen zu beweisen. Zusätzlich führt derselbe Formalismus zu einer konsistenten Integration von dynamischen Klasseninformationen, sodass sich ein theoretisch fundiertes und effizient zu berechnendes, dynamisches Klassifikationsmodell ergibt. Die hierbei gewonnenen Einsichten werden mit Pairwise Coupling, einem der relevantesten Verfahren für reduktionsbasierte Klassifikation, verbunden, wobei alle individuellen Vorhersagen mit einer Gewichtung kombiniert werden. Dies verallgemeinert nicht nur existierende Ansätze für Pairwise Coupling, sondern führt darüber hinaus auch zu einer Integration von dynamischen Klasseninformationen. Abschließend wird eine umfangreiche empirische Studie durchgeführt, die alle neu eingeführten Verfahren mit denen aus dem Stand der Forschung vergleicht. Hierfür werden Bewertungsfunktionen für dynamische Klassifikation eingeführt, die auf Sampling-Strategien basieren. Anschließend werden diese im Rahmen einer dreiteiligen Studie angewendet. Zunächst werden Support Vector Machines und Random Forests auf 26 Referenzdatensätzen aus dem UCI Machine Learning Repository angewendet. Im zweiten Teil werden zwei moderne, tiefe neuronale Netze auf fünf Referenzdatensätzen aus einer relativ aktuellen Referenzarbeit ausgewertet. Hierbei sind insbesondere Strategien relevant, die die Anwendung der eingeführten Verfahren in Verbindung mit großen Modellen ermöglicht, da eine naive Vorgehensweise nicht durchführbar ist. Schließlich wird ein Referenzdatensatz aus einem Produktionsprozess gewonnen, der die Integration von dynamischen Klasseninformationen ermöglicht, und ausgewertet. Die Ergebnisse zeigen, dass Pairwise-Coupling-Verfahren in Verbindung mit Support Vector Machines und Random Forests die besten Ergebnisse liefern, während in Verbindung mit tiefen neuronalen Netzen die Unterschiede zwischen den Verfahren oft klein bis vernachlässigbar sind. Am wichtigsten ist, dass alle Ergebnisse zeigen, dass dynamische Klassifikation die entsprechenden Erkennungsgenauigkeiten verbessert. Daher ist es entscheidend, dynamische Klasseninformationen in den entsprechenden Anwendungen zur Verfügung zu stellen, was eine entsprechende digitale Infrastruktur erfordert. KW - dynamic classification KW - multi-class classification KW - classifier calibration KW - evidence theory KW - Dempster–Shafer theory KW - Deep Learning KW - Deep Learning KW - Dempster-Shafer-Theorie KW - Klassifikator-Kalibrierung KW - dynamische Klassifikation KW - Evidenztheorie KW - Mehrklassen-Klassifikation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585125 ER - TY - GEN A1 - Prasse, Paul A1 - Iversen, Pascal A1 - Lienhard, Matthias A1 - Thedinga, Kristina A1 - Herwig, Ralf A1 - Scheffer, Tobias T1 - Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models’ accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1300 KW - deep neural networks KW - drug-sensitivity prediction KW - anti-cancer drugs Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577341 SN - 1866-8372 SP - 1 EP - 14 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Al Laban, Firas A1 - Reger, Martin A1 - Lucke, Ulrike T1 - Closing the Policy Gap in the Academic Bridge T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The highly structured nature of the educational sector demands effective policy mechanisms close to the needs of the field. That is why evidence-based policy making, endorsed by the European Commission under Erasmus+ Key Action 3, aims to make an alignment between the domains of policy and practice. Against this background, this article addresses two issues: First, that there is a vertical gap in the translation of higher-level policies to local strategies and regulations. Second, that there is a horizontal gap between educational domains regarding the policy awareness of individual players. This was analyzed in quantitative and qualitative studies with domain experts from the fields of virtual mobility and teacher training. From our findings, we argue that the combination of both gaps puts the academic bridge from secondary to tertiary education at risk, including the associated knowledge proficiency levels. We discuss the role of digitalization in the academic bridge by asking the question: which value does the involved stakeholders expect from educational policies? As a theoretical basis, we rely on the model of value co-creation for and by stakeholders. We describe the used instruments along with the obtained results and proposed benefits. Moreover, we reflect on the methodology applied, and we finally derive recommendations for future academic bridge policies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1310 KW - policy evaluation KW - higher education KW - virtual mobility KW - teacher training Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-583572 SN - 1866-8372 IS - 1310 ER - TY - THES A1 - Cichalla, Anika Katleen T1 - Ein konstruktivistisches Modell für die Didaktik der Informatik im Bachelorstudium T1 - A constructivistic model for the didactics of computational science in bachelor studies N2 - Lehrende in der Lehrkräfteausbildung sind stets damit konfrontiert, dass sie den Studierenden innovative Methoden modernen Schulunterrichts traditionell rezipierend vorstellen. In Deutschland gibt es circa 40 Universitäten, die Informatik mit Lehramtsbezug ausbilden. Allerdings gibt es nur wenige Konzepte, die sich mit der Verbindung von Bildungswissenschaften und der Informatik mit ihrer Didaktik beschäftigen und keine Konzepte, die eine konstruktivistische Lehre in der Informatik verfolgen. Daher zielt diese Masterarbeit darauf ab, diese Lücke aufgreifen und anhand des „Didaktik der Informatik I“ Moduls der Universität Potsdam ein Modell zur konstruktivistischen Hochschullehre zu entwickeln. Dabei soll ein bestehendes konstruktivistisches Lehrmodell auf die Informatikdidaktik übertragen und Elemente zur Verbindung von Bildungswissenschaften, Fachwissenschaften und Fachdidaktiken mit einbezogen werden. Dies kann eine Grundlage für die Planung von Informatikdidaktischen Modulen bieten, aber auch als Inspiration zur Übertragung bestehender innovativer Lehrkonzepte auf andere Fachdidaktiken dienen. Um ein solches konstruktivistisches Lehr-Lern-Modell zu erstellen, wird zunächst der Zusammenhang von Bildungswissenschaften, Fachwissenschaften und Fachdidaktiken erläutert und anschließend die Notwendigkeit einer Vernetzung hervorgehoben. Hieran folgt eine Darstellung zu relevanten Lerntheorien und bereits entwickelten innovativen Lernkonzepten. Anknüpfend wird darauf eingegangen, welche Anforderungen die Kultusminister- Konferenz an die Ausbildung von Lehrkräften stellt und wie diese Ausbildung für die Informatik momentan an der Universität Potsdam erfolgt. Aus allen Erkenntnissen heraus werden Anforderungen an ein konstruktivistisches Lehrmodell festgelegt. Unter Berücksichtigung der Voraussetzungen der Studienordnung für das Lehramt Informatik wird anschließend ein Modell für konstruktivistische Informatikdidaktik vorgestellt. Weiterführende Forschung könnte sich damit auseinandersetzen, inwiefern sich die Motivation und Leistung im vergleich zum ursprünglichen Modul ändert und ob die Kompetenzen zur Unterrichtsplanung und Unterrichtsgestaltung durch das neue Modulkonzept stärker ausgebaut werden können. N2 - Teachers in teacher training are always confronted with the fact that they present innovative methods of modern school teaching to students in a traditionally receptive way. In Germany, there are about 40 universities that train computational science with a focus on teaching. However, there are only a few concepts that deal with the connection of educational science and computer science with its didactics and no concepts that pursue constructivist teaching in computational science. Therefore, this master thesis aims to address this gap and to develop a model for constructivist university teaching based on the "Didactics of Computational Science I" module at the University of Potsdam. An existing constructivist teaching model is to be transferred to computational science didactics and elements for the connection of general pedagogy, scientific theory and didactics are to be included. This can provide a basis for planning computational science didactic modules, but also serve as inspiration for transferring existing innovative teaching concepts to other subject didactics. In order to create such a constructivist teaching-learning model, the interrelationship of general pedagogy, scientific theory and didactics is first explained and then the necessity of networking is emphasized. This is followed by a presentation of relevant learning theories and innovative learning concepts already developed. Subsequently, the requirements of the Standing Conference of the Ministers of Education and Cultural Affairs (Kultusministerkonferenz) for the training of teachers and how this training for computer science is currently carried out at the University of Potsdam are discussed. From all findings, requirements for a constructivist teaching model are defined. Taking into account the requirements of the study regulations for the computer science teaching profession, a model for constructivist computer science didactics is then presented. Further research could address the extent to which motivation and performance change in comparison to the original module and whether the competencies for lesson planning and lesson design can be more developed on base of the new module concept. KW - education KW - university education KW - teacher training KW - Hochschulbildung KW - Lehrkräfteausbildung KW - Konstruktivismus KW - construktivism KW - Informatik KW - Informatikdidaktik KW - Computational Science KW - didactics Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-550710 ER -