TY - BOOK A1 - Abrahamsson, Pekka A1 - Baddoo, Nathan A1 - Margaria, Tiziana A1 - Messnarz, Richard T1 - Software Process Improvement : 14th europea conference, EuroSpi 2007, Potsdam, Germany, September 26-28, 2007 ; Proceedings T3 - Lecture Notes in Computer Science Y1 - 2007 VL - 4764 PB - Springer CY - Berlin ER - TY - JOUR A1 - Bakera, Marco A1 - Margaria, Tiziana A1 - Renner, Clemens D. A1 - Steffen, Bernhard T1 - Game-Based model checking for reliable autonomy in space JF - Journal of aerospace computing, information, and communication N2 - Autonomy is an emerging paradigm for the design and implementation of managed services and systems. Self-managed aspects frequently concern the communication of systems with their environment. Self-management subsystems are critical, they should thus be designed and implemented as high-assurance components. Here, we propose to use GEAR, a game-based model checker for the full modal mu-calculus, and derived, more user-oriented logics, as a user friendly tool that can offer automatic proofs of critical properties of such systems. Designers and engineers can interactively investigate automatically generated winning strategies resulting from the games, this way exploring the connection between the property, the system, and the proof. The benefits of the approach are illustrated on a case study that concerns the ExoMars Rover. Y1 - 2011 U6 - https://doi.org/10.2514/1.32013 SN - 1940-3151 VL - 8 IS - 4 SP - 100 EP - 114 PB - American Institute of Aeronautics and Astronautics CY - Reston ER - TY - JOUR A1 - Blum, Niklas A1 - Boldea, Irina A1 - Magedanz, Thomas A1 - Margaria, Tiziana T1 - Service-oriented access to next generation networks : from service creation to execution N2 - Existing telecommunication networks and classical roles of operators are subject to fundamental change. Many network operators are currently seeking for new sources to generate revenue by exposing network capabilities to 3rd party service providers. At the same time we can observe that services on the World Wide Web (WWW) are becoming mature in terms of the definition of APIs that are offered towards other services. The combinations of those services are commonly referred to as Web 2.0 mash-ups. Rapid service design and creation becomes therefore important to meet the requirements in a changing technology and competitive market environment. This report describes our approach to include Next Generation Networks (NGN)-based telecommunications application enabler into complex services by defining a service broker that mediates between 3rd party applications and NGN service enablers. It provides policy-driven orchestration mechanisms for service enablers, a service authorization functionality, and a service discovery interface for Service Creation Environments. The work has been implemented as part of the Open SOA Telco Playground testbed at Fraunhofer FOKUS. Y1 - 2010 UR - http://www.springerlink.com/content/101750 U6 - https://doi.org/10.1007/s11036-010-0222-1 SN - 1383-469X ER - TY - JOUR A1 - Jörges, Sven A1 - Margaria, Tiziana A1 - Steffen, Bernhard T1 - Assuring property conformance of code generators via model checking JF - Formal aspects of computing : the international journal of formal methods N2 - Automatic code generation is an essential cornerstone of today's model-driven approaches to software engineering. Thus a key requirement for the success of this technique is the reliability and correctness of code generators. This article describes how we employ standard model checking-based verification to check that code generator models developed within our code generation framework Genesys conform to (temporal) properties. Genesys is a graphical framework for the high-level construction of code generators on the basis of an extensible library of well-defined building blocks along the lines of the Extreme Model-Driven Development paradigm. We will illustrate our verification approach by examining complex constraints for code generators, which even span entire model hierarchies. We also show how this leads to a knowledge base of rules for code generators, which we constantly extend by e.g. combining constraints to bigger constraints, or by deriving common patterns from structurally similar constraints. In our experience, the development of code generators with Genesys boils down to re-instantiating patterns or slightly modifying the graphical process model, activities which are strongly supported by verification facilities presented in this article. KW - Extreme Model-Driven Development KW - Code generation KW - Model checking KW - Verification Y1 - 2011 U6 - https://doi.org/10.1007/s00165-010-0169-9 SN - 0934-5043 VL - 23 IS - 5 SP - 589 EP - 606 PB - Springer CY - New York ER - TY - INPR A1 - Kröning, Daniel A1 - Margaria, Tiziana A1 - Woodcock, Jim T1 - Untitled T2 - Formal aspects of computing : the international journal of formal methods Y1 - 2011 U6 - https://doi.org/10.1007/s00165-011-0201-8 SN - 0934-5043 VL - 23 IS - 5 SP - 585 EP - 588 PB - Springer CY - New York ER - TY - JOUR A1 - Lamprecht, Anna-Lena A1 - Margaria, Tiziana ED - Lambrecht, Anna-Lena ED - Margaria, Tiziana T1 - Scientific Workflows and XMDD JF - Process Design for Natural Scientists: an agile model-driven approach N2 - A major part of the scientific experiments that are carried out today requires thorough computational support. While database and algorithm providers face the problem of bundling resources to create and sustain powerful computation nodes, the users have to deal with combining sets of (remote) services into specific data analysis and transformation processes. Today’s attention to “big data” amplifies the issues of size, heterogeneity, and process-level diversity/integration. In the last decade, especially workflow-based approaches to deal with these processes have enjoyed great popularity. This book concerns a particularly agile and model-driven approach to manage scientific workflows that is based on the XMDD paradigm. In this chapter we explain the scope and purpose of the book, briefly describe the concepts and technologies of the XMDD paradigm, explain the principal differences to related approaches, and outline the structure of the book. Y1 - 2014 SN - 978-3-662-45005-5 SN - 1865-0929 IS - 500 SP - 1 EP - 13 PB - Springer Verlag CY - Berlin ER - TY - JOUR A1 - Lamprecht, Anna-Lena A1 - Margaria, Tiziana ED - Lamprecht, Anna-Lena ED - Margaria, Tiziana T1 - Scientific workflows and XMDD JF - Process design for natural scientists Y1 - 2015 SN - 978-3-662-45006-2 SP - 1 EP - 13 PB - Springer CY - Berlin ER - TY - GEN A1 - Lamprecht, Anna-Lena A1 - Margaria, Tiziana A1 - Steffen, Bernhard T1 - Bio-jETI : a framework for semantics-based service composition N2 - Background: The development of bioinformatics databases, algorithms, and tools throughout the last years has lead to a highly distributedworld of bioinformatics services. Without adequatemanagement and development support, in silico researchers are hardly able to exploit the potential of building complex, specialized analysis processes from these services. The Semantic Web aims at thoroughly equipping individual data and services with machine-processable meta-information, while workflow systems support the construction of service compositions. However, even in this combination, in silico researchers currently would have to deal manually with the service interfaces, the adequacy of the semantic annotations, type incompatibilities, and the consistency of service compositions. Results: In this paper, we demonstrate by means of two examples how Semantic Web technology together with an adequate domain modelling frees in silico researchers from dealing with interfaces, types, and inconsistencies. In Bio-jETI, bioinformatics services can be graphically combined to complex services without worrying about details of their interfaces or about type mismatches of the composition. These issues are taken care of at the semantic level by Bio-jETI’s model checking and synthesis features. Whenever possible, they automatically resolve type mismatches in the considered service setting. Otherwise, they graphically indicate impossible/incorrect service combinations. In the latter case, the workflow developermay either modify his service composition using semantically similar services, or ask for help in developing the missing mediator that correctly bridges the detected type gap. Newly developed mediators should then be adequately annotated semantically, and added to the service library for later reuse in similar situations. Conclusion: We show the power of semantic annotations in an adequately modelled and semantically enabled domain setting. Using model checking and synthesis methods, users may orchestrate complex processes from a wealth of heterogeneous services without worrying about interfaces and (type) consistency. The success of this method strongly depends on a careful semantic annotation of the provided services and on its consequent exploitation for analysis, validation, and synthesis. We are convinced that these annotations will become standard, as they will become preconditions for the success and widespread use of (preferred) services in the Semantic Web T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 136 KW - European Bioinformatics Institute KW - Integration KW - Tool KW - Alignment KW - Workflow Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45066 ER - TY - JOUR A1 - Lamprecht, Anna-Lena A1 - Margaria, Tiziana A1 - Steffen, Bernhard ED - Lambrecht, Anna-Lena ED - Margaria, Tiziana T1 - Modeling and Execution of Scientific Workflows with the jABC Framework JF - Process Design for Natural Scientists: an agile model-driven approach N2 - We summarize here the main characteristics and features of the jABC framework, used in the case studies as a graphical tool for modeling scientific processes and workflows. As a comprehensive environment for service-oriented modeling and design according to the XMDD (eXtreme Model-Driven Design) paradigm, the jABC offers much more than the pure modeling capability. Associated technologies and plugins provide in fact means for a rich variety of supporting functionality, such as remote service integration, taxonomical service classification, model execution, model verification, model synthesis, and model compilation. We describe here in short both the essential jABC features and the service integration philosophy followed in the environment. In our work over the last years we have seen that this kind of service definition and provisioning platform has the potential to become a core technology in interdisciplinary service orchestration and technology transfer: Domain experts, like scientists not specially trained in computer science, directly define complex service orchestrations as process models and use efficient and complex domain-specific tools in a simple and intuitive way. Y1 - 2014 SN - 978-3-662-45005-5 SN - 1865-0929 IS - 500 SP - 14 EP - 29 PB - Springer Verlag CY - Berlin ER - TY - JOUR A1 - Lamprecht, Anna-Lena A1 - Wickert, Alexander A1 - Margaria, Tiziana ED - Lambrecht, Anna-Lena ED - Margaria, Tiziana T1 - Lessons Learned JF - Process Design for Natural Scientists: an agile model-driven approach N2 - This chapter summarizes the experience and the lessons we learned concerning the application of the jABC as a framework for design and execution of scientific workflows. It reports experiences from the domain modeling (especially service integration) and workflow design phases and evaluates the resulting models statistically with respect to the SIB library and hierarchy levels. Y1 - 2014 SN - 978-3-662-45005-5 SN - 1865-0929 IS - 500 SP - 45 EP - 64 PB - Springer Verlag CY - Berlin ER -