TY - GEN A1 - Margaria, Tiziana A1 - Kubczak, Christian A1 - Steffen, Bernhard T1 - Bio-jETI BT - a service integration, design, and provisioning platform for orchestrated bioinformatics processes T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods: Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions: As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 822 KW - fatty acid amide hydrolase KW - composite service KW - service orchestration KW - rest service KW - electronic tool integration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428868 IS - 822 ER - TY - GEN A1 - Lamprecht, Anna-Lena A1 - Margaria, Tiziana A1 - Steffen, Bernhard A1 - Sczyrba, Alexander A1 - Hartmeier, Sven A1 - Giegerich, Robert T1 - GeneFisher-P BT - variations of GeneFisher as processes in Bio-jETI T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: PCR primer design is an everyday, but not trivial task requiring state-of-the-art software. We describe the popular tool GeneFisher and explain its recent restructuring using workflow techniques. We apply a service-oriented approach to model and implement GeneFisher-P, a process-based version of the GeneFisher web application, as a part of the Bio-jETI platform for service modeling and execution. We show how to introduce a flexible process layer to meet the growing demand for improved user-friendliness and flexibility. Results: Within Bio-jETI, we model the process using the jABC framework, a mature model-driven, service-oriented process definition platform. We encapsulate remote legacy tools and integrate web services using jETI, an extension of the jABC for seamless integration of remote resources as basic services, ready to be used in the process. Some of the basic services used by GeneFisher are in fact already provided as individual web services at BiBiServ and can be directly accessed. Others are legacy programs, and are made available to Bio-jETI via the jETI technology. The full power of service-based process orientation is required when more bioinformatics tools, available as web services or via jETI, lead to easy extensions or variations of the basic process. This concerns for instance variations of data retrieval or alignment tools as provided by the European Bioinformatics Institute (EBI). Conclusions: The resulting service-and process-oriented GeneFisher-P demonstrates how basic services from heterogeneous sources can be easily orchestrated in the Bio-jETI platform and lead to a flexible family of specialized processes tailored to specific tasks. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 868 KW - Basic Service KW - European Bioinformatics Institute KW - Computation Tree Logic KW - Polymerase Chain Reaction Experiment KW - Input Validation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-434241 SN - 1866-8372 IS - 868 ER -