TY - INPR A1 - Fedosov, Boris A1 - Tarkhanov, Nikolai Nikolaevich T1 - Deformation quantisation and boundary value problems N2 - We describe a natural construction of deformation quantisation on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator. T3 - Preprints des Instituts für Mathematik der Universität Potsdam - 4 (2015) 5 KW - symplectic manifold KW - star product KW - trace KW - index Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77150 SN - 2193-6943 VL - 4 IS - 5 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - THES A1 - Friedrich, Alexander T1 - Minimizers of generalized Willmore energies and applications in general relativity N2 - Das Willmore Funktional ist eine Funktion die jeder Fläche in einer Riemannschen Mannigfaltigkeit, ihre totale mittlere Krümmung zuweist. Ein klassisches Problem der Differentialgeometrie ist es geschlossene (kompakt und ohne Rand) Flächen zu finden die das Willmore funktional minimieren, beziehungsweise die kritische Punkte des Willmore Funktionals sind. In dieser Doktorarbeit entwickeln wir ein Konzept von verallgemeinerten Willmore Funktionalen für Flächen in Riemannschen Mannigfaltigkeiten, wobei wir uns von physikalischen Modellen leiten lassen. Insbesondere ist hier die Hawking Energie der allgemeinen Relativitätstheorie und die Biegungsenergie von dünnen Membranen zu nennen. Für dieses verallgemeinerten Willmore Funktionale beweisen wir die Existenz von Minimieren mit vorgeschriebenen Flächeninhalt, in einer geeigneten Klasse von verallgemeinerten Flächen. Insbesondere konstruieren wir Minimierer der oben erwähnten Biegungsenergie mit vorgeschrieben Flächeninhalt und vorgeschriebenen, eingeschlossenem Volumen. Außerdem beweisen wir, dass kritische Punkte von verallgemeinerten Willmore Funktionalen mit vorgeschriebenen Flächeninhalt abseits endlich vieler Punkte glatt sind. Dabei stützen wir uns, wie auch im folgenden, auf die bestehende Theorie für das Willmore Funktional. An diese allgemeinen Resultate schließen wir eine detailliertere Analyse der Hawking Energie an. Im Kontext der allgemeinen Relativitätstheorie beschreibt die Umgebungsmannigfaltigkeit den Raum zu einem Zeitpunkt. Daher sind wir an dem Wechselspiel zwischen der Hawking Energie und der umgebenden Mannigfaltigkeit interessiert. Wir charakterisieren Punkte in der umgebenden Mannigfaltigkeit für die es in jeder Umgebung eine kritische Fläche mit vorgeschriebenem, kleinem Flächeninhalt gibt. Diese Punnkte werden als Konzentrationspunkte der Hawking Energie interpretiert. Außerdem berechnen wir eine Entwicklung der Hawking Energie auf kleinen, runden Sphären. Dadurch können wir eine Art Energiedichte der Hawking Energie identifizieren. Hierbei ist anzumerken, dass unsere Resultate im Kontrast zu Ergebnissen in der Literatur stehen. Dort wurde berechnet, dass die Entwicklung der Hawking Energie auf Sphären im Lichtkegel eines Punktes der umgebenden Mannigfaltigkeit in führender Ordnung proportional zur der klassischen Energiedichte der allgemeinen Relativitätstheorie ist. Zu diesem Zeitpunkt ist nicht klar wie diese Diskrepanz zu begründen ist. Ferner betrachten wir asymptotisch Schwarzschild Mannigfaltigkeiten. Sie sind ein Spezialfall von asymptotisch flachen Mannigfaltigkeiten, welche in der allgemeinen Relativitätstheorie als Modelle für isolierte Systeme dienen. Die Schwarzschild Raumzeit selbst ist eine rotationssymmetrische Raumzeit die schwarzen Loch beschreibt. In diesen asymptotisch Schwarzschild Mannigfaltigkeiten konstruieren wir eine Blätterung des äußeren Bereiches durch kritische Flächen der Hawking Energie mit vorgeschriebenen Flächeninhalt. Diese Blätterung kann in einem verallgemeinertem Sinne als Schwerpunkt des isolierten Systems betrachtet werden. Außerdem zeigen wir, dass die Hawking Energie entlang der Blätterung wächst je größer die Flächen werden. N2 - The Willmore functional is a function that maps an immersed Riemannian manifold to its total mean curvature. Finding closed surfaces that minimizes the Willmore energy, or more generally finding critical surfaces, is a classic problem of differential geometry. In this thesis we will develop the concept of generalized Willmore functionals for surfaces in Riemannian manifolds. We are guided by models in mathematical physics, such as the Hawking energy of general relativity and the bending energies for thin membranes. We prove the existence of minimizers under area constraint for these generalized Willmore functionals in a suitable class of generalized surfaces. In particular, we construct minimizers of the bending energy mentioned above for prescribed area and enclosed volume. Furthermore, we prove that critical surfaces of generalized Willmore functionals with prescribed area are smooth, away from finitely many points. These results and the following are based on the existing theory for the Willmore functional. This general discussion is succeeded by a detailed analysis of the Hawking energy. In the context of general relativity the surrounding manifold describes the space at a given time, hence we strive to understand the interplay between the Hawking energy and the ambient space. We characterize points in the surrounding manifold for which there are small critical spheres with prescribed area in any neighborhood. These points are interpreted as concentration points of the Hawking energy. Additionally, we calculate an expansion of the Hawking energy on small, round spheres. This allows us to identify a kind of energy density of the Hawking energy. It needs to be mentioned that our results stand in contrast to previous expansions of the Hawking energy. However, these expansions are obtained on spheres along the light cone at a given point. At this point it is not clear how to explain the discrepancy. Finally, we consider asymptotically Schwarzschild manifolds. They are a special case of asymptotically flat manifolds, which serf as models for isolated systems. The Schwarzschild spacetime itself is a classical solution to the Einstein equations and yields a simple description of a black hole. In these asymptotically Schwarzschild manifolds we construct a foliation of the exterior region by critical spheres of the Hawking energy with prescribed large area. This foliation can be seen as a generalized notion of the center of mass of the isolated system. Additionally, the Hawking energy of grows along the foliation as the area of the surfaces grows. T2 - Minimierer von Verallgemeinerten Willmore Energien und Anwendungen in der Allgemeinen Relativitätstheorie KW - Partial Differential Equations KW - Calculus of Variation KW - Differential Geometry KW - Geometric Analysis KW - Mathematical Physics KW - Partielle Differential Gleichungen KW - Variationsrechung KW - Differential Geometrie KW - Geometrische Analysis KW - Mathematische Physik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-481423 ER - TY - THES A1 - Gehring, Penelope T1 - Non-local boundary conditions for the spin Dirac operator on spacetimes with timelike boundary T1 - Nicht-lokale Randbedingungen für den spinorialen Dirac-Operator auf Raumzeiten mit zeitartigen Rand N2 - Non-local boundary conditions – for example the Atiyah–Patodi–Singer (APS) conditions – for Dirac operators on Riemannian manifolds are rather well-understood, while not much is known for such operators on Lorentzian manifolds. Recently, Bär and Strohmaier [15] and Drago, Große, and Murro [27] introduced APS-like conditions for the spin Dirac operator on Lorentzian manifolds with spacelike and timelike boundary, respectively. While Bär and Strohmaier [15] showed the Fredholmness of the Dirac operator with these boundary conditions, Drago, Große, and Murro [27] proved the well-posedness of the corresponding initial boundary value problem under certain geometric assumptions. In this thesis, we will follow the footsteps of the latter authors and discuss whether the APS-like conditions for Dirac operators on Lorentzian manifolds with timelike boundary can be replaced by more general conditions such that the associated initial boundary value problems are still wellposed. We consider boundary conditions that are local in time and non-local in the spatial directions. More precisely, we use the spacetime foliation arising from the Cauchy temporal function and split the Dirac operator along this foliation. This gives rise to a family of elliptic operators each acting on spinors of the spin bundle over the corresponding timeslice. The theory of elliptic operators then ensures that we can find families of non-local boundary conditions with respect to this family of operators. Proceeding, we use such a family of boundary conditions to define a Lorentzian boundary condition on the whole timelike boundary. By analyzing the properties of the Lorentzian boundary conditions, we then find sufficient conditions on the family of non-local boundary conditions that lead to the well-posedness of the corresponding Cauchy problems. The well-posedness itself will then be proven by using classical tools including energy estimates and approximation by solutions of the regularized problems. Moreover, we use this theory to construct explicit boundary conditions for the Lorentzian Dirac operator. More precisely, we will discuss two examples of boundary conditions – the analogue of the Atiyah–Patodi–Singer and the chirality conditions, respectively, in our setting. For doing this, we will have a closer look at the theory of non-local boundary conditions for elliptic operators and analyze the requirements on the family of non-local boundary conditions for these specific examples. N2 - Über nicht-lokale Randbedingungen – zum Beispiel dieAtiyah–Patodi–Singer (APS)-Bedingungen – für Dirac Operatoren auf Riemannschen Mannigfaltigkeiten ist recht viel bekannt, während für die hyperbolischen Dirac Operatoren auf Lorentz-Mannigfaltigkeiten dies noch nicht der Fall ist. Kürzlich haben Bär und Strohmaier [15] und Drago, Große und Murro [27] APS-ähnliche Bedingungen für den Spin Dirac Operator auf Lorentz-Mannigfaltigkeiten mit raumartigen bzw. zeitartigen Rand eingeführt. Während Bär und Strohmaier [15] zeigten, dass der Dirac Operator mit diesen Randbedingungen Fredholm ist, bewiesen Drago, Große und Murro [27] die Wohlgestelltheit des entsprechenden Anfangsrandwertproblems unter bestimmten geometrischen Annahmen. In dieser Arbeit werden wir in die Fußstapfen der letztgenannten Autoren treten und diskutieren, ob die APS-ähnlichen Bedingungen für Dirac Operatoren auf Lorentz-Mannigfaltigkeiten mit zeitartigen Rand durch allgemeinere Bedingungen ersetzt werden können, sodass die zugehörigen Anfangsrandwertprobleme immer noch wohlgestellt sind. Wir betrachten Randbedingungen, die in der Zeit lokal und in den Raumrichtungen nicht-lokal sind. Genauer gesagt verwenden wir die Raumzeitblätterung, die sich aus der Cauchy Zeitfunktion ergibt, und spalten den Dirac Operator entlang dieser Foliation auf. Daraus ergibt sich eine Familie elliptischer Operatoren, die jeweils auf Spinoren des Spinbündels über den entsprechenden Zeitschnitt wirken. Die Theorie der elliptischen Operatoren stellt dann sicher, dass wir Familien von nichtlokalen Randbedingungen bezüglich dieser Familie von Operatoren finden können. Im weiteren Verlauf verwenden wir solche Familien von Randbedingungen, um eine Lorentzsche Randbedingung auf dem gesamten zeitartigen Rand zu definieren. Durch das Analysieren der Lorentzschen Randbedingungen finden wir dann hinreichende Bedingungen für die Familie der nicht-lokalen Randbedingungen, die zur Wohlgestelltheit der entsprechenden Cauchy-Probleme führen. Die Wohlgestelltheit selbst wird dann mit Hilfe klassischer Methoden bewiesen, einschließlich Energieabschätzungen und Annäherung durch Lösungen der regularisierten Probleme. Außerdem verwenden wir diese Theorie, um explizite Randbedingungen für den Lorentzschen Dirac Operator zu konstruieren. Genauer gesagt werden wir zwei Beispiele für Randbedingungen diskutieren - das Analogon der Atiyah-Patodi-Singer- bzw. Chiralitäts-Bedingungen für unseren Fall. Dazu werden wir uns die Theorie der nicht-lokalen Randbedingungen für elliptische Operatoren genauer ansehen und die Anforderungen an die Familie der nicht-lokalen Randbedingungen für diese Beispiele analysieren. KW - Dirac operator KW - Diracoperator KW - spacetimes with timelike boundary KW - Raumzeiten mit zeitartigen Rand KW - boundary conditions KW - Randbedingungen KW - initial boundary value problem KW - Anfangsrandwertproblem Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577755 ER - TY - THES A1 - Mera, Azal Jaafar Musa T1 - The Navier-Stokes equations for elliptic quasicomplexes T1 - Die Navier–Stokes–Gleichungen für elliptische Quasikomplexe N2 - The classical Navier-Stokes equations of hydrodynamics are usually written in terms of vector analysis. More promising is the formulation of these equations in the language of differential forms of degree one. In this way the study of Navier-Stokes equations includes the analysis of the de Rham complex. In particular, the Hodge theory for the de Rham complex enables one to eliminate the pressure from the equations. The Navier-Stokes equations constitute a parabolic system with a nonlinear term which makes sense only for one-forms. A simpler model of dynamics of incompressible viscous fluid is given by Burgers' equation. This work is aimed at the study of invariant structure of the Navier-Stokes equations which is closely related to the algebraic structure of the de Rham complex at step 1. To this end we introduce Navier-Stokes equations related to any elliptic quasicomplex of first order differential operators. These equations are quite similar to the classical Navier-Stokes equations including generalised velocity and pressure vectors. Elimination of the pressure from the generalised Navier-Stokes equations gives a good motivation for the study of the Neumann problem after Spencer for elliptic quasicomplexes. Such a study is also included in the work.We start this work by discussion of Lamé equations within the context of elliptic quasicomplexes on compact manifolds with boundary. The non-stationary Lamé equations form a hyperbolic system. However, the study of the first mixed problem for them gives a good experience to attack the linearised Navier-Stokes equations. On this base we describe a class of non-linear perturbations of the Navier-Stokes equations, for which the solvability results still hold. N2 - Die klassischen Navier–Stokes–Differentialgleichungen der Hydrodynamik werden in der Regel im Rahmen der Vektoranalysis formuliert. Mehr versprechend ist die Formulierung dieser Gleichungen in Termen von Differentialformen vom Grad 1. Auf diesem Weg beinhaltet die Untersuchung der Navier–Stokes–Gleichungen die Analyse des de Rhamschen Komplexes. Insbesondere ermöglicht die Hodge–Theorie für den de Rham–Komplex den Druck aus den Gleichungen zu eliminieren. Die Navier–Stokes–Gleichungen bilden ein parabolisches System mit einem nichtlinearen Term, welcher Sinn nur für die Pfaffschen Formen (d.h Formen vom Grad 1) hat. Ein einfacheres Modell für Dynamik der inkompressiblen viskosen Flüssigkeit wird von der Burgers–Gleichungen gegeben. Diese Arbeit richtet sich an das Studium der invarianten Struktur der Navier–Stokes–Gleichungen, die eng mit der algebraischen Struktur des de Rham–Komplexes im schritt 1 zusammen steht. Zu diesem Zweck stellen wir vor die Navier–Stokes–Gleichungen im Zusammenhang mit jedem elliptischen Quasikomplex von Differentialoperatoren der ersten Ordnung. So ähneln die Gleichungen den klassischen Navier–Stokes–Gleichungen, einschließlich allgemeiner Geschwindigkeit– und Druckvektoren. Elimination des Drucks aus den verallgemeinerten Navier–Stokes–Gleichungen gibt eine gute Motivation für die Untersuchung des Neumann–Problems nach Spencer für elliptische Quasikomplexe. Eine solche Untersuchung ist auch in der Arbeit mit der Erörterung der Lamé-Gleichungen im Kontext der elliptischen Quasikomplexe auf kompakten Mannigfaltigkeiten mit Rand. Die nichtstationären Lamé-Gleichungen bilden ein hyperbolisches System. Allerdings gibt die Studie des ersten gemischten Problems für sie eine gute Erfahrung, um die linearisierten Navier–Stokes–Gleichungen anzugreifen. Auf dieser Basis beschreiben wir eine Klasse von nichtlinearen Störungen der Navier–Stokes–Gleichungen, für welche die Lösungsresultate noch gelten. KW - Navier-Stokes-Gleichungen KW - elliptische Quasi-Komplexe KW - Navier-Stoks equations KW - elliptic quasicomplexes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398495 ER -