TY - THES A1 - Ostrowski, Max T1 - Modern constraint answer set solving T1 - Moderne Constraint Antwortmengenprogrammierung N2 - Answer Set Programming (ASP) is a declarative problem solving approach, combining a rich yet simple modeling language with high-performance solving capabilities. Although this has already resulted in various applications, certain aspects of such applications are more naturally modeled using variables over finite domains, for accounting for resources, fine timings, coordinates, or functions. Our goal is thus to extend ASP with constraints over integers while preserving its declarative nature. This allows for fast prototyping and elaboration tolerant problem descriptions of resource related applications. The resulting paradigm is called Constraint Answer Set Programming (CASP). We present three different approaches for solving CASP problems. The first one, a lazy, modular approach combines an ASP solver with an external system for handling constraints. This approach has the advantage that two state of the art technologies work hand in hand to solve the problem, each concentrating on its part of the problem. The drawback is that inter-constraint dependencies cannot be communicated back to the ASP solver, impeding its learning algorithm. The second approach translates all constraints to ASP. Using the appropriate encoding techniques, this results in a very fast, monolithic system. Unfortunately, due to the large, explicit representation of constraints and variables, translation techniques are restricted to small and mid-sized domains. The third approach merges the lazy and the translational approach, combining the strength of both while removing their weaknesses. To this end, we enhance the dedicated learning techniques of an ASP solver with the inferences of the translating approach in a lazy way. That is, the important knowledge is only made explicit when needed. By using state of the art techniques from neighboring fields, we provide ways to tackle real world, industrial size problems. By extending CASP to reactive solving, we open up new application areas such as online planning with continuous domains and durations. N2 - Die Antwortmengenprogrammierung (ASP) ist ein deklarativer Ansatz zur Problemlösung. Eine ausdrucksstarke Modellierungssprache erlaubt es, Probleme einfach und flexibel zu beschreiben. Durch sehr effiziente Problemlösungstechniken, konnten bereits verschiedene Anwendungsgebiete erschlossen werden. Allerdings lassen sich Probleme mit Ressourcen besser mit Gleichungen über Ganze oder Reelle Zahlen lösen, anstatt mit reiner Boolescher Logik. In dieser Arbeit erweitern wir ASP mit Arithmetik über Ganze Zahlen zu Constraint Answer Set Programming (CASP). Unser Hauptaugenmerk liegt dabei auf der Erweiterung der Modellierungssprache mit Arithmetik, ohne Performanz oder Flexibilität einzubüßen. In einem ersten, bedarfsgesteuertem, modularen Ansatz kombinieren wir einen ASP Solver mit einem externen System zur Lösung von ganzzahligen Gleichungen. Der Vorteil dieses Ansatzes besteht darin, dass zwei verschiedene Technologien Hand in Hand arbeiten, wobei jede nur ihren Teil des Problems betrachten muss. Ein Nachteil der sich daraus ergibt ist jedoch, dass Abhängigkeiten zwischen den Gleichungen nicht an den ASP Solver kommuniziert werden können. Das beeinträchtigt die Lernfähigkeit des zu Grunde liegenden Algorithmus. Der zweite von uns verfolgte Ansatz übersetzt die ganzzahligen Gleichungen direkt nach ASP. Durch entsprechende Kodierungstechniken erhält man ein sehr effizientes, monolithisches System. Diese Übersetzung erfordert eine explizite Darstellung aller Variablen und Gleichungen. Daher ist dieser Ansatz nur für kleine bis mittlere Wertebereiche geeignet. Die dritte Methode, die wir in dieser Arbeit vorstellen, vereinigt die Vorteile der beiden vorherigen Ansätze und überwindet ihre Kehrseiten. Wir entwickeln einen lernenden Algorithmus, der die Arithmetik implizit lässt. Dies befreit uns davon, eine möglicherweise riesige Menge an Variablen und Formeln zu speichern, und erlaubt es uns gleichzeitig dieses Wissen zu nutzen. Das Ziel dieser Arbeit ist es, durch die Kombination hochmoderner Technologien, industrielle Anwendungsgebiete für ASP zu erschliessen. Die verwendeten Techniken erlauben eine Erweiterung von CASP mit reaktiven Elementen. Das heißt, dass das Lösen des Problems ein interaktiver Prozess wird. Das Problem kann dabei ständig verändert und erweitert werden, ohne dass Informationen verloren gehen oder neu berechnet werden müssen. Dies eröffnet uns neue Möglichkeiten, wie zum Beispiel reaktives Planen mit Ressourcen und Zeiten. KW - ASP (Answer Set Programming) KW - CASP (Constraint Answer Set Programming) KW - constraints KW - hybrid KW - SMT (SAT Modulo Theories) KW - Antwortmengenprogrammierung KW - hybrides Problemlösen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407799 ER - TY - JOUR A1 - Bahrs, Julian A1 - Gronau, Norbert T1 - Ungenutzte Potenziale im Wissensmanagment BT - Stand der Praxis JF - Handbuch prozessorientiertes Wissensmanagment Y1 - 2014 SN - 978-3-95545-026-7 SP - 5 EP - 12 PB - GITO CY - Berlin ER - TY - GEN T1 - Open-Science-Leitlinien der Universität Potsdam N2 - Diese Leitlinien wurden am 10. Mai 2023 vom Senat der Universität Potsdam zustimmend zur Kenntnis genommen. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-594897 ET - Version 1.0, Mai 2023 ER - TY - GEN T1 - Open Science Guidelines of the University of Potsdam N2 - The Open Science Guidelines of the University of Potsdam were developed by a working group of the Senate Commission for Research and Young Academics (FNK) and approved by the Senate on 10.05.2023. The guidelines are published here with minor editorial changes. Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-594900 ET - Version 1.0, May 2023 ER - TY - JOUR A1 - Thienen, Julia von A1 - Weinstein, Theresa Julia A1 - Meinel, Christoph T1 - Creative metacognition in design thinking BT - exploring theories, educational practices, and their implications for measurement JF - Frontiers in psychology N2 - Design thinking is a well-established practical and educational approach to fostering high-level creativity and innovation, which has been refined since the 1950s with the participation of experts like Joy Paul Guilford and Abraham Maslow. Through real-world projects, trainees learn to optimize their creative outcomes by developing and practicing creative cognition and metacognition. This paper provides a holistic perspective on creativity, enabling the formulation of a comprehensive theoretical framework of creative metacognition. It focuses on the design thinking approach to creativity and explores the role of metacognition in four areas of creativity expertise: Products, Processes, People, and Places. The analysis includes task-outcome relationships (product metacognition), the monitoring of strategy effectiveness (process metacognition), an understanding of individual or group strengths and weaknesses (people metacognition), and an examination of the mutual impact between environments and creativity (place metacognition). It also reviews measures taken in design thinking education, including a distribution of cognition and metacognition, to support students in their development of creative mastery. On these grounds, we propose extended methods for measuring creative metacognition with the goal of enhancing comprehensive assessments of the phenomenon. Proposed methodological advancements include accuracy sub-scales, experimental tasks where examinees explore problem and solution spaces, combinations of naturalistic observations with capability testing, as well as physiological assessments as indirect measures of creative metacognition. KW - accuracy KW - creativity KW - design thinking KW - education KW - measurement KW - metacognition KW - innovation KW - framework Y1 - 2023 U6 - https://doi.org/10.3389/fpsyg.2023.1157001 SN - 1664-1078 VL - 14 PB - Frontiers Research Foundation CY - Lausanne ER - TY - BOOK T1 - E‑Learning-Strategie 2017–2021 N2 - Die E-Learning-Strategie beschreibt zunächst das Selbstverständnis, was unter E-Learning verstanden werden soll, die aktuelle Situation an der Universität Potsdam und Eckpunkte von strategischen Ansätzen für E-Learning-Entwicklung. Die Universität Potsdam versteht sich demnach als eine Hochschule im digitalen Zeitalter, die den umfassenden Einsatz von E-Learning als gelebte Lehr-/Lernkultur für alle Studierenden, Lehrenden und Mitarbeiter(innen) verwirklichen will. Ausgehend von dem relativ hohen Niveau, dass die E-Learning-Aktivitäten bereits aufweisen, wird der Schwerpunkt der kommenden Jahre in der Verstetigung, Vernetzung und Bündelung der Aktivitäten gesehen. Auf Basis dieser Vorüberlegungen werden mögliche Handlungsfelder und Maßnahmen für die E-Learning Entwicklung der nächsten Jahre an der Universität Potsdam vorgeschlagen. Die Handlungsfelder lauten: "Austausch und Vernetzung", "Content", "Innovation und Verstetigung", "Medienkompetenz", "Organisationsstrukturen", "Qualitätsentwicklung" und "UP und die Welt". Die Priorisierung und Umsetzung der Maßnahmen wird durch eine Steuerungsgruppe initiiert und begleitet. Die Strategie wurde auf der 247. Sitzung des Senats der Universität Potsdam am 25.01.2017 beschlossen. KW - Universität Potsdam KW - Hochschule KW - E-Learning KW - Strategie KW - Digitalisierung KW - Lehre KW - IT KW - Higher Education KW - Strategy KW - Policy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397916 ER - TY - JOUR A1 - Altenburg, Tom A1 - Giese, Sven Hans-Joachim A1 - Wang, Shengbo A1 - Muth, Thilo A1 - Renard, Bernhard Y. T1 - Ad hoc learning of peptide fragmentation from mass spectra enables an interpretable detection of phosphorylated and cross-linked peptides JF - Nature machine intelligence N2 - Fragmentation of peptides leaves characteristic patterns in mass spectrometry data, which can be used to identify protein sequences, but this method is challenging for mutated or modified sequences for which limited information exist. Altenburg et al. use an ad hoc learning approach to learn relevant patterns directly from unannotated fragmentation spectra. Mass spectrometry-based proteomics provides a holistic snapshot of the entire protein set of living cells on a molecular level. Currently, only a few deep learning approaches exist that involve peptide fragmentation spectra, which represent partial sequence information of proteins. Commonly, these approaches lack the ability to characterize less studied or even unknown patterns in spectra because of their use of explicit domain knowledge. Here, to elevate unrestricted learning from spectra, we introduce 'ad hoc learning of fragmentation' (AHLF), a deep learning model that is end-to-end trained on 19.2 million spectra from several phosphoproteomic datasets. AHLF is interpretable, and we show that peak-level feature importance values and pairwise interactions between peaks are in line with corresponding peptide fragments. We demonstrate our approach by detecting post-translational modifications, specifically protein phosphorylation based on only the fragmentation spectrum without a database search. AHLF increases the area under the receiver operating characteristic curve (AUC) by an average of 9.4% on recent phosphoproteomic data compared with the current state of the art on this task. Furthermore, use of AHLF in rescoring search results increases the number of phosphopeptide identifications by a margin of up to 15.1% at a constant false discovery rate. To show the broad applicability of AHLF, we use transfer learning to also detect cross-linked peptides, as used in protein structure analysis, with an AUC of up to 94%. Y1 - 2022 U6 - https://doi.org/10.1038/s42256-022-00467-7 SN - 2522-5839 VL - 4 IS - 4 SP - 378 EP - 388 PB - Springer Nature Publishing CY - London ER -