TY - THES A1 - Quiroga Carrasco, Rodrigo Adolfo T1 - Cenozoic style of deformation and spatiotemporal variations of the tectonic stress field in the southern central Andes T1 - Estudio del estilo de deformación y variación espacio T1 - Känozoischer Deformationsstil und raum-zeitliche Variationen des tektonischen Spannungsfeldes in den südlichen Zentralanden BT - temporal del campo de esfuerzos imperante durante el cenozoico a lo largo de la transecta Laguna del Negro Francisco-Santiago del estero (26°30-27°30´s), Andes centrales del sur BT - Laguna del Negro Francisco-Santiago del estero transect (27°30´s) BT - Laguna del Negro Francisco-Santiago del estero transect (27°30's) N2 - The central Andean plateau is the second largest orogenic plateau in the world and has formed in a non-collisional orogenic system. It extends from southern Peru (15°S) to northern Argentina and Chile (27°30'S) and reaches an average elevation of 4,000 m.a.s.l. South of 24°S, the Andean plateau is called Puna and it is characterized by a system of endorheic basins with thick sequences where clastic and evaporitic strata are preserved. Between 26° and 27°30'S, the Puna terminates in a structurally complex zone which coincides with the transition from a normal subduction zone to a flat subduction ("flat slab") zone, which extends to 33°S. This transition zone also coincides with important morphostructural provinces that, from west to east, correspond to i) the Cordillera Frontal, where the Maricunga Belt is located; ii) the Famatina system; and iv) the north-western, thick-skinned Sierras Pampeanas. Various structural, sedimentological, thermochronological and geochronological studies in this region have documented a complex history of deformation and uplift during successive Cenozoic deformation events. These processes caused the increase of crustal thickness, as well as episodes of diachronic uplift, which attained its present configuration during the late Miocene. Subsequently, the plateau experienced a change in deformation style from contraction to extension and transtension documented by ubiquitous normal faults, earthquakes, and magmatic rocks. However, at the southern edge of the Puna plateau and in the transition to the other morphostructural provinces, the variation of deformation processes and the changes in the tectonic stress field are not fully understood. This location is thus ideally located to evaluate how the tectonic stress field may have evolved and how it may have been affected by the presence/absence of an orogenic plateau, as well as by the existence of inherited structural anisotropies within the different tectonic provinces. This thesis investigates the relationship between shallow crustal deformation and the spatiotemporal evolution of the tectonic stress field in the southern sector of the Andean plateau, during pre-, syn- and post-uplift periods of this plateau. To carry out this research, multiple methodological approaches were chosen that include (U-Pb) radiometric dating; the analysis of mesoscopic faults to obtain stress tensors and the orientation of the principal stress axes; the determination of magnetic susceptibility anisotropy in sedimentary and volcanoclastic rocks to identify shortening directions or directions of sedimentary transport; kinematic modeling to infer deep crustal structures and deformation; and finally, a morphometric analysis to identify geomorphological indicators associated with Quaternary tectonism. Combining the obtained results with data from published studies, this study reveals a complex history of the tectonic stress field that has been characterized by changes in orientation and by vertical permutations of the principal stress axes during each deformation regime over the last ~24 Ma. The evolution of the tectonic stress field can be linked with three orogenic phases at this latitude of the Andean orogen: (1) a first phase with an E-W-oriented compression documented between Eocene and middle Miocene, which coincided with Andean crustal thickening, lateral growth, and topographic uplift; (2) a second phase characterized by a compressive transpressional stress regime, starting at ~11 Ma and ~5 Ma on the western and eastern edge of the Puna plateau, respectively, and a compressive stress regime in the Famatina system and the Sierras Pampeanas, which is interpreted to reflect a transition between Neogene orogenic construction and the maximum accumulation of deformation and topographic uplift of the Puna plateau; and (3) a third phase, when the tectonic regime caused a changeover to a tensional stress state that followed crustal thickening and the maximum uplift of the plateau between ~5-4 Ma; this is especially well expressed in the Puna, in its western border area with the Maricunga-Valle Ancho Belt, and along its eastern border in the transition with the Sierras Pampeanas. The results of the study thus document that the plateau rim experienced a shift from a compressional to a transtensional regime, which differs from the tensional state of stress of the Andean Plateau in the northern sectors for the same period. Similar stress changes have been documented during the construction of the Tibetan plateau, where a predominantly compressional stress regime changed to a transtensional regime, but which was superseded by a purely tensional regime, between 14 and 4 Ma. N2 - El plateau Andino es el segundo plateau orogénico más grande del mundo y se ubica en los Andes Centrales, desarrollado en un sistema orogénico no colisional. Se extiende desde el sur del Perú (15°S), hasta el norte de Argentina y Chile (27°30´S). A partir de los 24°S y prologándose hacia el sur, el plateau Andino se denomina Puna y está caracterizado por un sistema de cuencas endorreicas y salares delimitados por cordones montañosos. Entre los 26° y 27°30´S, la Puna encuentra su límite austral en una zona de transición entre una zona de subducción normal y una zona de subducción plana o “flat slab” que se prolonga hasta los 33°S. Diversos estudios documentan la ocurrencia de un aumento del espesor cortical, y levantamiento episódico y diacrónico del relieve, alcanzando su configuración actual durante el Mioceno tardío. Posteriormente, el plateau habría experimentado un cambio en el estilo de deformación dominado por procesos extensionales evidenciado por fallas y terremotos de cinemática normal. Sin embargo, en el borde sur del plateau de la Puna y en las áreas delimitadas con el resto del orógeno, la variación del campo de esfuerzo no está del todo comprendida, reflejando una excelente oportunidad para evaluar cómo el campo de esfuerzo puede evolucionar durante el desarrollo del orógeno y cómo puede verse afectado por la presencia/ausencia de un plateau orogénico, así como también por la existencia de anisotropías estructurales propias de cada unidad morfotectónica. Esta Tesis investiga la relación entre la deformación cortical somera y la evolución en tiempo y espacio del campo de esfuerzos en el sector sur del plateau Andino, durante el cenozoico tardío. Para realizar esta investigación, se utilizaron técnicas de obtención de edades radiométricas con el método Uranio-Plomo (U-Pb), análisis de fallas mesoscópicas para la obtención de tensores de esfuerzos y delimitación de la orientación de los ejes principales de esfuerzos, análisis de anisotropía de susceptibilidad magnética en rocas sedimentarias y volcanoclásticas para estimar direcciones de acortamiento o direcciones de transporte sedimentario, técnicas de modelado cinemático para llegar a una aproximación de las estructuras corticales profundas asociadas a la deformación allí registrada, y un análisis morfométrico para la identificación de indicadores geomorfológicos asociados a deformación producto de la actividad tectónica cuaternaria. Combinando estos resultados con los antecedentes previamente documentados, el estudio revela una compleja variación del campo de esfuerzo caracterizado por cambios en la orientación y permutaciones verticales de los ejes principales de esfuerzos, durante cada régimen de deformación, durante los últimos ~24 Ma. La evolución del campo de esfuerzos puede ser asociada temporalmente a tres fases orogénicas involucradas con la evolución de los Andes Centrales en esta latitud: (1) una primera fase con un régimen de esfuerzos compresivos de acortamiento E-O documentado desde el Eoceno, Oligoceno tardío hasta el Mioceno medio en el área, coincide con la fase de construcción andina, engrosamiento y crecimiento de la corteza y levantamiento topográfico; (2) una segunda fase caracterizada por un régimen de esfuerzos de transcurrencia, a partir de los ~11 Ma en el borde occidental y compresión y transcurrencia a los~5 Ma en el borde oriental del plateau de la Puna, y un régimen de esfuerzo compresivos en Famatina y las Sierras Pampeanas interpretado como una transición entre la construcción orogénica del Neógeno y la máxima acumulación de deformación y el alzamiento topográfico del plateau de la Puna, y (3) una tercera fase donde el régimen se caracteriza por la transcurrencia en la Puna y en su borde occidental y en su borde oriental con las Sierras Pampeanas, después de ~5-4 Ma, interpretado como un régimen de esfuerzos controlados por el engrosamiento cortical desarrollado a lo largo del borde sur del plateau Altiplano/Puna, previo a un colapso orogénico. Los resultados dejan en evidencia que el borde del plateau experimentó el paso desde un régimen compresivo hacia uno transcurrente, que se diferencia de la extensión documentada hacia el norte en el plateau Andino para el mismo período. Cambios en los esfuerzos similares han sido documentado durante la construcción del plateau Tibetano, en donde un régimen de esfuerzo predominantemente compresivo cambió a un régimen de transcurrente cuando el plateau habría alcanzado la mitad de su elevación actual, y que posteriormente derivó en un régimen extensional, entre 14 y 4 Ma, cuando la altitud del plateau fue superior al 80% respecto a su actitud actual, lo que podría estar indicando que los regímenes transcurrentes representan etapas transicionales entre las zonas externas del plateau bajo compresión y las zonas internas, en las que los regímenes extensionales son más viables de ocurrir. N2 - Die südlichen Zentralen Anden beherbergen das zweitgrößte orogene Plateau der Welt (Altiplano-Puna); im Gegensatz zu Tibet hat sich dieses Plateau in einem nicht-kollisionalen Gebirgsbildungssystem gebildet. Es erstreckt sich vom Süden Perus (15°S) bis zum Norden Argentiniens und Chiles (27°30'S) und erreicht eine durchschnittliche Höhe von 4.000 m.ü.d.M. Südlich von 24°S wird das Andenplateau Puna genannt und ist durch ein System von endorheischen Becken mit mächtigen sedimentären Abfolgen gekennzeichnet, in denen klastische und evaporitische Schichten erhalten sind. Zwischen 26° und 27°30'S endet die Puna in einer strukturell komplexen Zone, die mit dem Übergang von einer normalen Subduktionszone zu einer flachen Subduktionszone ("flat slab") zusammenfällt, die sich bis 33°S erstreckt. Diese Übergangszone fällt auch mit wichtigen morphostrukturellen Provinzen zusammen, die von Westen nach Osten i) der Cordillera Frontal, wo sich der Maricunga-Gürtel befindet, ii) dem Famatina-System und iv) den nordwestlichen Sierras Pampeanas entsprechen. Verschiedene strukturelle, sedimentologische, thermochronologische und geochronologische Studien in dieser Region haben eine komplexe Geschichte der Deformation und Hebung während aufeinanderfolgender känozoischer Deformationsereignisse dokumentiert. Diese Prozesse führten zu einer Zunahme der Krustendicke sowie Episoden diachroner Hebung, die im späten Miozän zur heutigen Form des Orogens führten. In der Folgezeit änderte sich der Deformationsstil des Plateaus von Kontraktion zu Extension und Transtension, was durch die allgegenwärtigen Abschiebungen, Erdbeben und magmatischen Gesteine dokumentiert wird. Am südlichen Rand des Puna-Plateaus und im Übergang zu den anderen morphostrukturellen Provinzen sind die Variation der Deformationsprozesse und die Veränderungen im tektonischen Spannungsfeld jedoch noch nicht vollständig verstanden. Diese Region des Orogens ist daher ideal, um zu untersuchen, wie sich das tektonische Spannungsfeld entwickelt hat und wie es durch das Vorhandensein bzw. das Fehlen eines orogenen Plateaus sowie durch strukturelle Anisotropien innerhalb der verschiedenen tektonischen Provinzen beeinflusst wurde. In dieser Arbeit wird die Beziehung zwischen der bruchhaften Krustendeformation und der räumlich-zeitlichen Entwicklung des tektonischen Spannungsfeldes im südlichen Sektor des Puna-Plateaus während der Prä-, Syn- und Post-Hebungs-Perioden untersucht. Zur Durchführung dieser Untersuchungen wurden mehrere methodische Ansätze gewählt, darunter radiometrische Datierungen (U-Pb), die Analyse mesoskopischer Verwerfungen zur Ermittlung von Spannungstensoren und der Ausrichtung der Hauptspannungsachsen, die Bestimmung der Anisotropie der magnetischen Suszeptibilität in sedimentären und vulkanoklastischen Gesteinen zur Identifizierung von Verkürzungsrichtungen oder Richtungen des Sedimenttransports, kinematische Modellierung zur Ableitung tiefer Krustenstrukturen und Deformation sowie schließlich eine morphometrische Analyse zur Identifizierung geomorphologischer Indikatoren im Zusammenhang mit der quartären Tektonik. Durch die Kombination der erzielten Ergebnisse mit Daten aus bereits veröffentlichten Studien dokumentiert diese Untersuchung eine komplexe Geschichte des tektonischen Spannungsfeldes, die durch Veränderungen in der Ausrichtung und durch vertikale Permutationen der Hauptspannungsachsen während jedes Deformationsregimes in den letzten 24 Millionen Jahren gekennzeichnet war. Die Entwicklung des tektonischen Spannungsfeldes in dieser Region kann mit drei orogenen Phasen des Anden-Orogens in Verbindung gebracht werden: (1) eine erste Phase mit einer E-W-orientierten Kompression, die zwischen dem Eozän und dem mittleren Miozän dokumentiert ist und mit einer Verdickung der Kruste des Orogens, einem lateralen Wachstum sowie einer topografischen Hebung einherging; (2) eine zweite Phase, die durch ein kompressives, transpressives Spannungsregime gekennzeichnet ist, das bei ~11 Ma bzw. ~5 Ma am westlichen bzw. östlichen Rand der Puna-Hochebene manifestiert ist, sowie durch ein kompressives Spannungsregime im benachbarten Famatina-System und in den Sierras Pampeanas, das als Übergang zwischen der neogenen Krustenverdickung und der maximalen Akkumulation von Deformation und topographischer Hebung der Puna-Hochebene interpretiert wird; und (3) eine dritte Phase, in der das tektonische Regime zu einem Spannungszustand überging, der auf eine Krustenverdickung und die maximale Hebung des Plateaus zwischen ~5-4 Ma folgte; dieses Stadium ist besonders gut in der Puna, in ihrem westlichen Grenzgebiet zum Maricunga-Valle Ancho-Gürtel und entlang ihrer östlichen Grenze im Übergang zu den Sierras Pampeanas zu erkennen und zeigt weiträumige Krustenextension. Die Ergebnisse der Studie belegen somit, dass der Plateaurand einen Wechsel von einem Kompressions- zu einem Transtensionsregime erlebte, das sich von dem Spannungszustand des Andenplateaus in den nördlichen Sektoren für denselben Zeitraum unterscheidet. Ähnliche Spannungsänderungen wurden während des Aufbaus des tibetischen Plateaus dokumentiert, wo ein vorwiegend kompressiver Spannungszustand in einen transtensionalen Zustand überging, der jedoch zwischen 14 und 4 Ma von einem rein tensionalen Spannungszustand abgelöst wurde. KW - Central Andes KW - Puna plateau KW - late cenozoic stress field KW - Andes Centrales KW - Puna plateau KW - campo de esfuerzo del Cenozoico tardío KW - Zentralanden KW - Andenplateau Puna KW - Spannungsfeld des späten Känozoikums Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610387 ER - TY - THES A1 - Barrionuevo, Matías T1 - The role of the upper plate in the Andean tectonic evolution (33-36°S): insights from structural geology and numerical modeling T1 - El rol de la placa superior en la evolución tectónica andina (33-36°S): aportes desde la geología estructural y el modelado numérico T1 - Die Rolle der oberen Platte in der tektonischen Entwicklung der Anden (33-36°S): Erkenntnisse aus der Strukturgeologie und der numerischen Modellierung N2 - Los Andes Centrales del Sur (33-36°S) son un gran laboratorio para el estudio de los procesos de deformación orogénica, donde las condiciones de borde, como la geometría de la placa subductada, imponen un importante control sobre la deformación andina. Por otro lado, la Placa Sudamericana presenta una serie de heterogeneidades que también imparten un control sobre el modo de deformación. El objetivo de esta tesis es probar el control de este último factor sobre la construcción del sistema orogénico andino. A partir de la integración de la información superficial y de subsuelo en el área sur (34°-36°S), se estudió la evolución de la deformación andina sobre el segmento de subducción normal. Se desarrolló un modelo estructural que evalúa el estado de esfuerzos desde el Mioceno hasta la actualidad, el rol de estructuras previas y su influencia en la migración de fluidos. Con estos datos y publicaciones previas de la zona norte del área de estudio (33°-34ºS), se realizó un modelado numérico geodinámico para probar la hipótesis del papel de las heterogeneidades de la placa superior en la evolución andina. Se utilizaron dos códigos (LAPEX-2D y ASPECT) basados en elementos finitos/diferencias finitas, que simulan el comportamiento de materiales con reologías elastoviscoplásticas bajo deformación. Los resultados del modelado sugieren que la deformación contraccional de la placa superior está significativamente controlada por la resistencia de la litósfera, que está definida por la composición de la corteza superior e inferior y por la proporción del manto litosférico, que a su vez está definida por eventos tectónicos previos. Estos eventos previos también definieron la composición de la corteza y su geometría, que es otro factor que controla la localización de la deformación. Con una composición de corteza inferior más félsica, la deformación sigue un modo de cizalla pura mientras que las composiciones más máficas provocan un modo de deformación tipo cizalla simple. Por otro lado, observamos que el espesor inicial de la litósfera controla la localización de la deformación, donde zonas con litósfera más fina es propensa a concentrar la deformación. Un límite litósfera-astenósfera asimétrico, como resultado del flujo de la cuña mantélica tiende a generar despegues vergentes al E. N2 - The Southern Central Andes (33°-36°S) are an excellent natural laboratory to study orogenic deformation processes, where boundary conditions, such as the geometry of the subducted plate, impose an important control on the evolution of the orogen. On the other hand, the South American plate presents a series of heterogeneities that additionally impart control on the mode of deformation. This thesis aims to test the control of this last factor over the construction of the Cenozoic Andean orogenic system. From the integration of surface and subsurface information in the southern area (34-36°S), the evolution of Andean deformation over the steeply dipping subduction segment was studied. A structural model was developed evaluating the stress state from the Miocene to the present-day and its influence in the migration of magmatic fluids and hydrocarbons. Based on these data, together with the data generated by other researchers in the northern zone of the study area (33-34°S), geodynamic numerical modeling was performed to test the hypothesis of the decisive role of upper-plate heterogeneities in the Andean evolution. Geodynamic codes (LAPEX-2D and ASPECT) which simulate the behavior of materials with elasto-visco-plastic rheologies under deformation, were used. The model results suggest that upper-plate contractional deformation is significantly controlled by the strength of the lithosphere, which is defined by the composition of the upper and lower crust, and by the proportion of lithospheric mantle, which in turn is determined by previous tectonic events. In addition, the previous regional tectono-magmatic events also defined the composition of the crust and its geometry, which is another factor that controls the localization of deformation. Accordingly, with more felsic lower crustal composition, the deformation follows a pure-shear mode, while more mafic compositions induce a simple-shear deformation mode. On the other hand, it was observed that initial lithospheric thickness may fundamentally control the location of deformation, with zones characterized by thin lithosphere are prone to concentrate it. Finally, it was found that an asymmetric lithosphere-astenosphere boundary resulting from corner flow in the mantle wedge of the eastward-directed subduction zone tends to generate east-vergent detachments. N2 - Die südlichen Zentralanden (33°-36°S) sind eine ausgezeichnete, natürliche Forschungsumgebung zur Untersuchung gebirgsbildender Deformationsprozesse, in der Randbedingungen, wie die Geometrie der subduzierten Platte, einen starken Einfluss auf die Evolution des Gebirges besitzen. Anderseits sind die Deformationsmechanismen geprägt von der Heterogenität der Südamerikanischen Platte. In dieser Arbeit wird die Bedeutung dieses Mechanismus für die Herausbildung der Anden während des Känozoikums untersucht. Im südlichen Teil (34-36°S), in dem die subduzierte Platte in einem steileren Winkel in den Erdmantel absinkt, wird die Entwicklung der Andendeformation mithilfe von oberflächlich aufgezeichneten und in tiefere Erdschichten reichenden Daten untersucht. Das darauf aufbauende Strukturmodell ermöglicht die Abschätzung der tektonischen Spannungen vom Miozän bis in die Neuzeit und den Einfluss der Bewegungen von magmatischen Fluiden, sowie Kohlenwasserstoffen. Auf Grundlage dieser Daten und solcher, die von Wissenschaftlern im nördlichen Bereich des Untersuchungsgebietes (33-34°S) erfasst wurden, wurde eine geodynamische, numerische Modellierung durchgeführt, um die Hypothese des Einflusses der Heterogenität der oberen Platten auf die Gebirgsbildung der Anden zu überprüfen. Die genutzte geodynamische Softwares (LAPEX-2D und ASPECT) simulieren das Verhalten von elasto-viskoplastischen Materialien, wenn diese unter Spannung stehen. Die Modellierungsergebnisse zeigen, dass die Kontraktionsprozesse hauptsächlich durch die Stärke der Lithosphäre beeinflusst werden. Diese Kenngröße wird aus der Zusammensetzung von Ober- und Unterkruste und dem Anteil des lithosphärischen Mantels, der durch vorhergehende tektonische Vorgänge überprägt ist, bestimmt. Diese räumlich begrenzten tektono-magmatischen Events definieren ebenfalls die Zusammensetzung und die Geometrie der Erdkruste, welche einen großen Einfluss auf das räumliche Auftreten von Deformationsprozessen hat. Eine eher felsische Unterkruste führt vorrangig zu pure-shear, während eine eher mafisch zusammengesetzte Unterkruste primär zu einem Deformationsmechanismus führt, der simple-shear genannt wird. Weiterhing wurde beobachtet, dass die Dicke der Lithosphäre vor der Deformation einen fundamentalen Einfluss auf die räumliche Eingrenzung von Deformation hat, wobei Regionen mit einer dünnen Lithosphärenschicht verstärkt Deformation aufweisen. Eine asymmetrische Grenzschicht zwischen Lithosphäre und Asthenosphäre ist das Resultat von Fließprozessen im Erdmantel, im Keil zwischen der obenliegenden Platte und der sich ostwärts absinkenden Subduktionszone, und verstärkt die Herausbildung von nach Osten gerichteten Abscherungen in der Erdkruste. KW - structural geology KW - tectonics KW - subduction KW - geodynamic modeling KW - geodynamische Modellierung KW - Strukturgeologie KW - Subduktion KW - Tektonik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515909 ER -