TY - THES A1 - Neuharth, Derek T1 - Evolution of divergent and strike-slip boundaries in response to surface processes T1 - Die Entwicklung divergenter und transversaler Plattengrenzen unter dem Einfluss von Erdoberflächenprozessen N2 - Plate tectonics describes the movement of rigid plates at the surface of the Earth as well as their complex deformation at three types of plate boundaries: 1) divergent boundaries such as rift zones and mid-ocean ridges, 2) strike-slip boundaries where plates grind past each other, such as the San Andreas Fault, and 3) convergent boundaries that form large mountain ranges like the Andes. The generally narrow deformation zones that bound the plates exhibit complex strain patterns that evolve through time. During this evolution, plate boundary deformation is driven by tectonic forces arising from Earth’s deep interior and from within the lithosphere, but also by surface processes, which erode topographic highs and deposit the resulting sediment into regions of low elevation. Through the combination of these factors, the surface of the Earth evolves in a highly dynamic way with several feedback mechanisms. At divergent boundaries, for example, tensional stresses thin the lithosphere, forcing uplift and subsequent erosion of rift flanks, which creates a sediment source. Meanwhile, the rift center subsides and becomes a topographic low where sediments accumulate. This mass transfer from foot- to hanging wall plays an important role during rifting, as it prolongs the activity of individual normal faults. When rifting continues, continents are eventually split apart, exhuming Earth’s mantle and creating new oceanic crust. Because of the complex interplay between deep tectonic forces that shape plate boundaries and mass redistribution at the Earth’s surface, it is vital to understand feedbacks between the two domains and how they shape our planet. In this study I aim to provide insight on two primary questions: 1) How do divergent and strike-slip plate boundaries evolve? 2) How is this evolution, on a large temporal scale and a smaller structural scale, affected by the alteration of the surface through erosion and deposition? This is done in three chapters that examine the evolution of divergent and strike-slip plate boundaries using numerical models. Chapter 2 takes a detailed look at the evolution of rift systems using two-dimensional models. Specifically, I extract faults from a range of rift models and correlate them through time to examine how fault networks evolve in space and time. By implementing a two-way coupling between the geodynamic code ASPECT and landscape evolution code FastScape, I investigate how the fault network and rift evolution are influenced by the system’s erosional efficiency, which represents many factors like lithology or climate. In Chapter 3, I examine rift evolution from a three-dimensional perspective. In this chapter I study linkage modes for offset rifts to determine when fast-rotating plate-boundary structures known as continental microplates form. Chapter 4 uses the two-way numerical coupling between tectonics and landscape evolution to investigate how a strike-slip boundary responds to large sediment loads, and whether this is sufficient to form an entirely new type of flexural strike-slip basin. N2 - Plattentektonik beschreibt die Bewegung starrer tektonischer Platten an der Erdoberfläche sowie deren komplexe Deformation an drei Arten von Plattengrenzen: 1) divergenten Grenzen wie Grabenbrüchen und mittelozeanische Rücken, 2) transversalen Grenzen, an denen Platten gegeneinander verschoben werden, wie die San-Andreas-Verwerfung, und 3) konvergenten Grenzen, die große Gebirgszüge wie die Anden bilden. Diese schmalen Deformationszonen, die Platten begrenzen, weisen meist komplexe Dehnungsmuster auf, die sich im Laufe der Zeit entwickeln. Während dieser Entwicklung wird die Verformung der Plattengrenzen durch tektonische Kräfte aus dem tiefen Erdinneren und der Lithosphäre, aber auch durch Oberflächenprozesse, welche topografische Erhebungen erodieren und die daraus resultierenden Sedimente in tiefer gelegenen Gebieten ablagern, angetrieben. Durch das Zusammenwirken und die Rückkopplung dieser Faktoren entwickelt sich die Erdoberfläche in einer extrem dynamischen Art und Weise. An divergenten Grenzen beispielsweise dünnen Zugspannungen die Lithosphäre aus, was zu einer Hebung und anschließenden Erosion der Flanken eines Grabenbruchs führt, wobei wiederum Sedimente freigesetzt werden. Währenddessen sinkt das Zentrum des Grabens ab und wird zu einer topografischen Senke, in der sich Sedimente ablagern. Diese Massenumverteilung vom Fuß zum Hang einer Verwerfung spielt eine wichtige Rolle, da er die Aktivität einzelner Verwerfungen verlängert. Durch anhaltende Divergenz werden Kontinente schließlich auseinandergerissen, wodurch der Erdmantel an die Erdoberfläche gefördert und neue ozeanische Kruste gebildet wird. Aufgrund des komplexen Zusammenspiels zwischen tektonischen Kräften aus dem tiefen Erdinneren und der Massenumverteilung an der Erdoberfläche ist es von entscheidender Bedeutung, die Rückkopplungen zwischen diesen beiden Bereichen zu verstehen. In dieser Studie möchte ich Einblicke zu zwei Hauptfragen geben: 1) Wie entwickeln sich divergierende Plattengrenzen? 2) Wie wird diese Entwicklung auf einer großen zeitlichen und einer kleinen strukturellen Skala durch die Veränderung der Oberfläche durch Erosion und Sedimentation beeinflusst? In drei Kapiteln untersuche ich die Entwicklung von divergenten und streichenden Plattengrenzen anhand numerischer Modelle. In Kapitel 2 wird die Entwicklung von Grabenbrüchen anhand zweidimensionaler Modelle im Detail erforscht. Dabei extrahiere ich Verwerfungen aus einer Reihe von Modellen und korreliere sie über die Zeit, um zu untersuchen, wie sich Verwerfungsnetzwerke räumlich und zeitlich entwickeln. Durch die bidirektionale Kopplung des Geodynamik-Codes ASPECT und des Erdoberflächen-Codes FastScape untersuche ich, wie diese Verwerfungsnetzwerk und der Grabenbruch im Allgemeinen durch die Erosionseffizienz des Systems, welche viele Faktoren wie Lithologie oder Klima abbildet, beeinflusst werden. In Kapitel 3 untersuche ich die Entwicklung eines Grabenbruchs aus einer dreidimensionalen Perspektive. In diesem Kapitel analysiere ich wie sich gegeneinander versetzte Grabenbrüche verbinden und wann sich dabei schnell rotierende kontinentale Mikroplatten bilden. In Kapitel 4 nutze ich die entwickelte bidirektionale Kopplung zwischen Geodynamik und Erdoberflächenprozessen, um zu verstehen, wie transversale Plattengrenzen auf Sedimentlasten reagieren und ob die ausreicht, um einen völlig neue Art von Sedimentbecken in dieser Umgebung zu formen. KW - geodynamics KW - numerical modelling KW - rift KW - strike-slip KW - surface processes KW - microplate KW - FastScape KW - ASPECT KW - ASPECT KW - FastScape KW - Geodynamik KW - Mikroplatte KW - numerische Modellierung KW - Rift KW - Blattverschiebung KW - Oberflächenprozesse Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549403 ER - TY - THES A1 - Heckenbach, Esther Lina T1 - Geodynamic modeling of process interactions at continental plate boundaries N2 - Plate tectonic boundaries constitute the suture zones between tectonic plates. They are shaped by a variety of distinct and interrelated processes and play a key role in geohazards and georesource formation. Many of these processes have been previously studied, while many others remain unaddressed or undiscovered. In this work, the geodynamic numerical modeling software ASPECT is applied to shed light on further process interactions at continental plate boundaries. In contrast to natural data, geodynamic modeling has the advantage that processes can be directly quantified and that all parameters can be analyzed over the entire evolution of a structure. Furthermore, processes and interactions can be singled out from complex settings because the modeler has full control over all of the parameters involved. To account for the simplifying character of models in general, I have chosen to study generic geological settings with a focus on the processes and interactions rather than precisely reconstructing a specific region of the Earth. In Chapter 2, 2D models of continental rifts with different crustal thicknesses between 20 and 50 km and extension velocities in the range of 0.5-10 mm/yr are used to obtain a speed limit for the thermal steady-state assumption, commonly employed to address the temperature fields of continental rifts worldwide. Because the tectonic deformation from ongoing rifting outpaces heat conduction, the temperature field is not in equilibrium, but is characterized by a transient, tectonically-induced heat flow signal. As a result, I find that isotherm depths of the geodynamic evolution models are shallower than a temperature distribution in equilibrium would suggest. This is particularly important for deep isotherms and narrow rifts. In narrow rifts, the magnitude of the transient temperature signal limits a well-founded applicability of the thermal steady-state assumption to extension velocities of 0.5-2 mm/yr. Estimation of the crustal temperature field affects conclusions on all temperature-dependent processes ranging from mineral assemblages to the feasible exploitation of a geothermal reservoir. In Chapter 3, I model the interactions of different rheologies with the kinematics of folding and faulting using the example of fault-propagation folds in the Andean fold-and-thrust belt. The evolution of the velocity fields from geodynamic models are compared with those from trishear models of the same structure. While the latter use only geometric and kinematic constraints of the main fault, the geodynamic models capture viscous, plastic, and elastic deformation in the entire model domain. I find that both models work equally well for early, and thus relatively simple stages of folding and faulting, while results differ for more complex situations where off-fault deformation and secondary faulting are present. As fault-propagation folds can play an important role in the formation of reservoirs, knowledge of fluid pathways, for example via fractures and faults, is crucial for their characterization. Chapter 4 deals with a bending transform fault and the interconnections between tectonics and surface processes. In particular, the tectonic evolution of the Dead Sea Fault is addressed where a releasing bend forms the Dead Sea pull-apart basin, while a restraining bend further to the North resulted in the formation of the Lebanese mountains. I ran 3D coupled geodynamic and surface evolution models that included both types of bends in a single setup. I tested various randomized initial strain distributions, showing that basin asymmetry is a consequence of strain localization. Furthermore, by varying the surface process efficiency, I find that the deposition of sediment in the pull-apart basin not only controls basin depth, but also results in a crustal flow component that increases uplift at the restraining bend. Finally, in Chapter 5, I present the computational basis for adding further complexity to plate boundary models in ASPECT with the implementation of earthquake-like behavior using the rate-and-state friction framework. Despite earthquakes happening on a relatively small time scale, there are many interactions between the seismic cycle and the long time spans of other geodynamic processes. Amongst others, the crustal state of stress as well as the presence of fluids or changes in temperature may alter the frictional behavior of a fault segment. My work provides the basis for a realistic setup of involved structures and processes, which is therefore important to obtain a meaningful estimate for earthquake hazards. While these findings improve our understanding of continental plate boundaries, further development of geodynamic software may help to reveal even more processes and interactions in the future. N2 - Plattentektonische Grenzen bilden die Nahtstellen zwischen tektonischen Platten. Sie werden durch eine Vielzahl von unterschiedlichen und miteinander verknüpften Prozessen geformt und spielen eine Schlüsselrolle im Bereich der Georisiken und der Entstehung von Georessourcen. Viele dieser Prozesse sind bereits erforscht, während viele andere noch unbearbeitet oder unentdeckt sind. In dieser Arbeit wird die geodynamische numerische Modellierungssoftware ASPECT verwendet, um weitere Prozessinteraktionen an kontinentalen Plattengrenzen zu untersuchen. Im Gegensatz zu natürlichen Daten hat die geodynamische Modellierung den Vorteil, dass Prozesse direkt quantifiziert und alle Parameter über die gesamte Entwicklung einer Struktur analysiert werden können. Außerdem können Prozesse und Wechselwirkungen aus komplexen Zusammenhängen herausgefiltert werden, da der Modellierer volle Kontrolle über alle beteiligten Parameter hat. Um dem vereinfachenden Charakter von Modellen im Allgemeinen Rechnung zu tragen, habe ich mich für die Untersuchung allgemeiner geologischer Gegeben-heiten entschieden, wobei der Schwerpunkt auf den Prozessen und Wechselwirkungen liegt, anstatt eine bestimmte Region der Erde genau zu rekonstruieren. In Kapitel 2 werden 2D-Modelle von kontinentalen Rifts mit unterschiedlichen Krustendicken zwischen 20 und 50 km, sowie Extensionsgeschwindigkeiten im Bereich von 0,5-10 mm/Jahr verwendet, um eine Geschwindigkeitsgrenze für die Annahme eines thermischen Gleichgewichtszustandes zu erhalten, welcher üblicherweise verwendet wird, um die Temperaturfelder kontinentaler Rifts weltweit zu beschreiben. Da die Geschwindigkeit der tektonischen Deformation die der Wärmeleitung übersteigt, befindet sich das Temperaturfeld nicht im Gleichgewicht, sondern ist durch ein transientes, tektonisch induziertes Wärmestromsignal gekennzeichnet. Daraus ergibt sich, dass die Tiefen der Isothermen in den geodynamischen Entwicklungsmodellen flacher liegen, als es eine Temperaturverteilung im Gleichgewichtszustand vermuten ließe. Dies macht sich besondersbei tiefen Isothermen und narrow Rifts bemerkbar. In narrow Rifts begrenzt die Magnitude des transienten Temperatursignals eine fundierte Anwendbarkeit der thermischen Gleichgewichtsannahme auf Extensionsgeschwindigkeiten im Bereich von 0,5-2 mm/Jahr. Die Abschätzung des Temperaturfeldes der Erdkruste wirkt sich auf alle temperaturabhängigen Prozesse aus, von der Mineralzusammensetzung bis hin zur möglichen Nutzung eines geothermischen Reservoirs. In Kapitel 3 modelliere ich die Wechselwirkungen verschiedener Rheologien mit der Kinematik von Auffaltungen und Verwerfungen am Beispiel von fault-propagation folds im andinen Falten- und Überschiebungsgürtel. Die Entwicklung der Geschwindigkeitsfelder aus geodynamischen Modellen wird mit denen aus Trishear-Modellen für dieselbe Struktur verglichen. Während letztere nur geometrische und kinematische Charakteristika der Hauptverwerfung verwenden, erfassen die geodynamischen Modelle sowohl viskose, wie auch plastische und elastische Verformung im gesamten Modellbereich. Meine Forschung zeigt, dass beide Modelle für frühe und damit vergleichbar einfache Phasen der Auffaltung und Verwerfung gleichermaßen gut anwendbar sind, während die Ergebnisse für komplexere Situationen, in denen Verfor-mungen außerhalb der Hauptstörung sowie sekundäre Verwerfungen auftreten, auseinander gehen. Da fault-propagation folds eine wichtige Rolle bei der Bildung von Lagerstätten spielen können, ist Kenntnis zu Migrationswegen von Fluiden, zum Beispiel über Klüfte und Verwerfungen, für ihre Charakterisierung von entscheidender Bedeutung. Kapitel 4 befasst sich mit Biegungen von Transformstörungen sowie den Zusammenhängen zwischen Tektonik und Oberflächenprozessen. Insbesondere wird die tektonische Entwicklung der Verwerfung am Toten Meer behandelt, wo eine von Extension geprägte Biegung der Verwerfung das Pull-Apart-Becken des Toten Meeres bildet, während eine weiter nördlich gelegene von Kompression geprägte Biegung zur Bildung eines Gebirgszuges im Libanon führte. Für dieses Kapitel habe ich gekoppelte 3D Modelle der Geodynamik und Oberflächenentwicklung genutzt sowie beide Arten von Biegungen in einem Modell erforscht. Das Testen von verschiedenen, zufälligen Initialspannungsverteilungen zeigte, dass die Asymmetrie des Beckens eine Folge der Spannungslokalisierung ist. Außerdem habe ich durch Variation der Oberflächenprozesseffizienz herausgearbeitet, dass die Sedimentierung im Pull-Apart-Becken nicht nur die Beckentiefe steuert, sondern auch zu einer Strömungskomponente von Erdkrustenmaterial führt, die die Ablift an der von Kompression geprägten Biegung der Transformstörung erhöht. Anschließend stelle ich in Kapitel 5 die Implementierung von erdbebenähnlichem Verhalten unter Verwendung der Rate-and-State Gleichungen vor, welche die Grundlage für die Erweiterung der Komplexität von Plattengrenzenmodellen in ASPECT bildet. Obwohl Erdbeben auf einer relativ kurzen Zeitskala stattfinden, gibt es viele Wechselwirkungen zwischen dem seismischen Zyklus und den langen Zeitspannen anderer geodynamischer Prozesse. Unter anderem können der Spannungszustand der Kruste sowie das Vorhandensein von Fluiden oder Änderungen der Temperatur das Reibungsverhalten eines Störungssegmentes verändern. Meine Arbeit liefert die Grundlage für einen realistischen Aufbau der beteiligten Strukturen und Prozesse, der wichtig ist, um eine aussagekräftige Abschätzung der Erdbebengefährdung zu erhalten. Während diese Ergebnisse unser Verständnis der kontinentalen Plattengrenzen verbessern, kann die Weiterentwicklung geodynamischer Software dazu beitragen, in Zukunft weitere Prozesse und Wechselwirkungen aufzudecken. T2 - Geodynamische Modellierung von Prozessinteraktionen an kontinentalen Plattengrenzen KW - geodynamic modeling KW - plate boundaries KW - continental crust KW - heat flow KW - landscape evolution KW - geodynamische Modellierung KW - Plattengrenzen KW - kontinentale Kruste KW - Wärmediffusion KW - Oberflächenmodellierung Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-647500 ER -