TY - THES A1 - de Vera, Jean-Pierre Paul T1 - The relevance of ecophysiology in astrobiology and planetary research T1 - Die Relevanz der Ökophysiologie in der Astrobiologie und Planetenforschung BT - implications for the characterization of the habitability of planets and biosignatures BT - Implikationen für die Charakterisierung der Habitabilität von Planeten und Biosignaturen N2 - Eco-physiological processes are expressing the interaction of organisms within an environmental context of their habitat and their degree of adaptation, level of resistance as well as the limits of life in a changing environment. The present study focuses on observations achieved by methods used in this scientific discipline of “Ecophysiology” and to enlarge the scientific context in a broader range of understanding with universal character. The present eco-physiological work is building the basis for classifying and exploring the degree of habitability of another planet like Mars by a bio-driven experimentally approach. It offers also new ways of identifying key-molecules which are playing a specific role in physiological processes of tested organisms to serve as well as potential biosignatures in future space exploration missions with the goal to search for life. This has important implications for the new emerging scientific field of Astrobiology. Astrobiology addresses the study of the origin, evolution, distribution and future of life in the universe. The three fundamental questions which are hidden behind this definition are: how does life begin and evolve? Is there life beyond Earth and, if so, how can we detect it? What is the future of life on Earth and in the universe? It means that this multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System. It comprises the search for the evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System like the icy moons of the Jovian and Saturnian system, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space. For this purpose an integrated research strategy was applied, which connects field research, laboratory research allowing planetary simulation experiments with investigation enterprises performed in space (particularly performed in the low Earth Orbit. N2 - Ökophysiologische Prozesse sind durch Interaktionen der Organismen mit der Umwelt in ihrem Habitat, durch ihren Grad der Anpassungsfähigkeit, dem Grad der Resistenz als auch durch die Begrenzungen des Lebens in einer sich verändernden Umwelt gekennzeichnet. Die hier vorliegende Studie konzentriert sich auf die Ergebnisse, die durch die Anwendung der Methoden aus der wissenschaftlichen Disziplin „Ökophysiologie“ erzielt wurden und erlaubt eine Erweiterung dieses wissenschaftlichen Kontextes mit mehr universalem Charakter. Die vorliegende Ökophysiologische Arbeit bildet die Grundlage für eine Klassifizierung und Erkundung des Grades der Habitabilität eines anderen Planeten wie dem Mars durch experimentelle Ansätze. Sie zeigt auch neue Wege für die Identifizierung von Schlüsselmolekülen, die eine besondere Rolle in physiologischen Prozessen getesteter Organismen spielt, um auch als mögliche Biosignaturen für zukünftige Weltraumerkundungsmissionen mit dem Ziel der Suche nach Leben im All zu dienen. Das wirkt sich auch im besonderen Maße auf das sich neu ausbildende wissenschaftliche Feld der Astrobiologie aus. Die Astrobiologie befaßt sich mit der Erforschung des Ursprungs, der Entwicklung, der Verbreitung und Zukunft des Lebens im Universum. Die drei grundlegenden Fragen, die sich hinter dieser Definition verbergen, sind: wie entstand und entwickelte sich das Leben? Gibt es Leben außerhalb der Erde, und falls ja, wie können wir es nachweisen? Was ist die Zukunft des Lebens auf der Erde und im Universum? Das bedeutet, dass dieses viele Disziplinen umfassende Arbeitsfeld die Suche nach einer anderen habitablen Umwelt in unserem Sonnensystem und anderen habitablen Planeten außerhalb unseres Sonnensystems, die Suche nach der Evidenz präbiotischer Chemie und Leben auf dem Mars und anderen Himmelskörpern in unserem Sonnensystem, wie beispielsweise auf den Eismonden des Jupiter- und Saturnsystems, Labor- und Feldforschung bis hin zu den Ursprüngen und der Evolution des Lebens auf der Erde beinhaltet und Untersuchungen über das Potential von Leben, sich den Herausforderungen auf der Erde und im All anzupassen, mit einschließt. Zu diesem Zweck wurde eine ganzheitliche Forschungsstrategie angewendet, welche die Feldforschung, Laborforschung mit Planetensimulations-Experimenten und die Forschung im All(insbesondere die Untersuchungen im nahen Erdorbit) miteinander verbindet. KW - astrobiology KW - eco-physiology KW - planetary simulation KW - biosignatures KW - habitability KW - Astrobiologie KW - Ökophysiologie KW - Planetensimulation KW - Biosignaturen KW - Habitabilität Y1 - 2018 ER - TY - THES A1 - Eckert, Silvia T1 - Trait variation in changing environments: Assessing the role of DNA methylation in non-native plant species T1 - Merkmalsvariation in sich verändernden Umgebungen: Bewertung der Rolle der DNA-Methylierung bei nicht einheimischen Pflanzenarten N2 - The increasing introduction of non-native plant species may pose a threat to local biodiversity. However, the basis of successful plant invasion is not conclusively understood, especially since these plant species can adapt to the new range within a short period of time despite impoverished genetic diversity of the starting populations. In this context, DNA methylation is considered promising to explain successful adaptation mechanisms in the new habitat. DNA methylation is a heritable variation in gene expression without changing the underlying genetic information. Thus, DNA methylation is considered a so-called epigenetic mechanism, but has been studied in mainly clonally reproducing plant species or genetic model plants. An understanding of this epigenetic mechanism in the context of non-native, predominantly sexually reproducing plant species might help to expand knowledge in biodiversity research on the interaction between plants and their habitats and, based on this, may enable more precise measures in conservation biology. For my studies, I combined chemical DNA demethylation of field-collected seed material from predominantly sexually reproducing species and rearing offsping under common climatic conditions to examine DNA methylation in an ecological-evolutionary context. The contrast of chemically treated (demethylated) plants, whose variation in DNA methylation was artificially reduced, and untreated control plants of the same species allowed me to study the impact of this mechanism on adaptive trait differentiation and local adaptation. With this experimental background, I conducted three studies examining the effect of DNA methylation in non-native species along a climatic gradient and also between climatically divergent regions. The first study focused on adaptive trait differentiation in two invasive perennial goldenrod species, Solidago canadensis sensu latu and S. gigantea AITON, along a climate gradient of more than 1000 km in length in Central Europe. I found population differences in flowering timing, plant height, and biomass in the temporally longer-established S. canadensis, but only in the number of regrowing shoots for S. gigantea. While S. canadensis did not show any population structure, I was able to identify three genetic groups along this climatic gradient in S. gigantea. Surprisingly, demethylated plants of both species showed no change in the majority of traits studied. In the subsequent second study, I focused on the longer-established goldenrod species S. canadensis and used molecular analyses to infer spatial epigenetic and genetic population differences in the same specimens from the previous study. I found weak genetic but no epigenetic spatial variation between populations. Additionally, I was able to identify one genetic marker and one epigenetic marker putatively susceptible to selection. However, the results of this study reconfirmed that the epigenetic mechanism of DNA methylation appears to be hardly involved in adaptive processes within the new range in S. canadensis. Finally, I conducted a third study in which I reciprocally transplanted short-lived plant species between two climatically divergent regions in Germany to investigate local adaptation at the plant family level. For this purpose, I used four plant families (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae) and here I additionally compared between non-native and native plant species. Seeds were transplanted to regions with a distance of more than 600 kilometers and had either a temperate-oceanic or a temperate-continental climate. In this study, some species were found to be maladapted to their own local conditions, both in non-native and native plant species alike. In demethylated individuals of the plant species studied, DNA methylation had inconsistent but species-specific effects on survival and biomass production. The results of this study highlight that DNA methylation did not make a substantial contribution to local adaptation in the non-native as well as native species studied. In summary, my work showed that DNA methylation plays a negligible role in both adaptive trait variation along climatic gradients and local adaptation in non-native plant species that either exhibit a high degree of genetic variation or rely mainly on sexual reproduction with low clonal propagation. I was able to show that the adaptive success of these non-native plant species can hardly be explained by DNA methylation, but could be a possible consequence of multiple introductions, dispersal corridors and meta-population dynamics. Similarly, my results illustrate that the use of plant species that do not predominantly reproduce clonally and are not model plants is essential to characterize the effect size of epigenetic mechanisms in an ecological-evolutionary context. N2 - Die zunehmende Eintragung nicht-heimischer Pflanzenarten kann eine Gefahr für die lokale Artenvielfalt darstellen. Die Grundlagen einer erfolgreichen pflanzlichen Ausbreitung sind jedoch nicht abschließend geklärt, zumal sich diese Arten innerhalb kurzer Zeit an das neue Verbreitungsgebiet anpassen können trotz anfänglich reduzierter genetischer Vielfalt der Startpopulationen. In diesem Kontext gilt DNA-Methylierung als vielversprechend, um erfolgreiche Anpassungsmechanismen im neuen Lebensraum zu erklären. Bei der DNA-Methylierung handelt es sich um eine vererbbare Variation der Genaktivität, ohne dass die zugrundeliegende genetische Erbinformation verändert wird. Damit gehört DNA-Methylierung zu den sogenannten epigenetischen Mechanismen, wurde jedoch vorwiegend bei sich klonal vermehrenden Pflanzenarten oder genetischen Modellpflanzen untersucht. Ein Verständnis dieses epigenetischen Mechanismus im Zusammenhang mit nicht-einheimischen, sich vorwiegend sexuell reproduzierenden Pflanzenarten erweitert das Wissen in der Biodiversitätsforschung zur Interaktion zwischen Pflanzen und ihrem Lebensraum und kann, darauf aufbauend, präzisere Maßnahmen in der Naturschutzbiologie ermöglichen. Für meine Studien kombinierte ich die chemische DNA-Demethylierung von im Freiland gesammeltem Samenmaterial sich vorwiegend sexuell fortpflanzender Arten und die Aufzucht unter gemeinsamen klimatischen Bedingungen, um DNA-Methylierung im ökologisch-evolutionären Kontext zu untersuchen. Der Kontrast von chemisch behandelten (demethylierten) Pflanzen, deren Methylierungsvariation nun künstlich verringert war, und unbehandelten Kontrollpflanzen derselben Art ermöglichte mir die Auswirkung dieses Mechanismus auf adaptive Merkmalsvariationen und lokale Anpassung zu studieren. Vor diesem experimentellen Hintergrund führte ich drei Studien durch, um die Auswirkung von DNA-Methylierung bei nicht-einheimischen Pflanzenarten entlang eines klimatischen Gradienten und zwischen zwei klimatisch unterschiedlichen Regionen zu untersuchen. Die erste Studie konzentrierte sich auf adaptive Merkmalsveränderungen bei Nachkommen von zwei invasiven, mehrjährigen Goldrutenarten, Solidago canadensis sensu latu und S. gigantea AITON, entlang eines Klimagradienten von mehr als 1000 km Länge in Zentraleuropa. Ich fand graduelle Unterschiede im Blühzeitpunkt, in der Pflanzenhöhe und der Biomasse bei der zeitlich länger etablierten S. canadensis, bei S. gigantea jedoch nur in der Anzahl der nachwachsenden Triebe. Während S. canadensis keinerlei Populationsstruktur aufwies, konnte ich bei S. gigantea drei genetische Gruppen entlang dieses Klimagradienten identifizieren. Überraschenderweise zeigten demethylierte Pflanzen beider Arten keine Veränderung in der überwiegenden Anzahl der untersuchten Merkmale. In der darauffolgenden zweiten Studie konzentrierte ich mich auf die länger etablierte Goldrutenart S. canadensis und verwendete molekulare Analysen, um räumliche epigenetische und genetische Populationunterschiede aus den Exemplaren der vorhergehenden Studie abzuleiten. Ich fand schwache genetische aber keine epigenetische räumliche Variation zwischen den Populationen. Zusätzlich konnte ich einen genetischen und einen epigenetischen Marker identifizieren, welcher potentiell unter Selektion stehen könnte. Allerdings bestätigten die Ergebnisse dieser Studie erneut, dass DNA-Methylierung bei S. canadensis kaum in die Anpassung an das neue Verbreitungsgebiet involviert zu sein scheint. Schließlich führte ich eine dritte Studie durch, in welcher ich Samen kurzlebiger Pflanzenarten reziprok zwischen zwei klimatisch unterschiedlichen Regionen in Deutschland transplantierte, um lokale Anpassung auf Ebene der Pflanzenfamilien zu untersuchen. Zu diesem Zweck nutze ich vier Pflanzenfamilien (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae), wobei ich hier auch zwischen nicht-heimischen und heimischen Pflanzenarten verglich. Beide Regionen lagen mehr als 600 Kilometer voneinander entfernt und wiesen entweder ein gemäßigt-ozeanisches oder gemäßigt-kontinentales Klima auf. In dieser Studie zeigte sich für einige—sowohl nicht-einheimische als auch einhimische—Arten eine Fehlanpassung an die eigenen lokalen Bedingungen. In demethylierten Individuen der untersuchten Pflanzenarten wirkte sich die DNA-Methylierung widersprüchlich, aber artspezifisch auf das Überleben und die Biomasseproduktion aus. Die Ergebnisse dieser Studie unterstreichen, dass DNA-Methylierung einen vernachlässigbaren Beitrag zur lokalen Anpassung bei den untersuchten nicht-heimischen, aber auch einheimischen Arten leistete. Zusammenfassend konnte ich mit dieser Arbeit festellen, dass DNA-Methylierung bei nicht-einheimischen Pflanzenarten eine untergeordnete Rolle sowohl bei der adaptiven Merkmalsvariation entlang von Klimagradienten als auch der lokalen Anpassung an klimatisch unterschiedliche Regionen spielt, wenn diese Pflanzenarten eine hohe genetische Vielfalt aufweisen und sich hauptsächlich sexuell vermehren. Ich konnte zeigen, dass der Anpassungserfolg dieser nicht-einheimischen Pflanzenarten kaum durch DNA-Methylierung erklärbar ist, sondern vielmehr eine mögliche Folge mehrfacher Eintragungen, von Ausbreitungskorridoren und Meta-Populationsdynamiken sein könnte. Die Ergebnisse dieser Studien verdeutlichen ebenso, dass die Verwendung von Pflanzenarten, die sich nicht überwiegend klonal vermehren und keine genetischen Modellpflanzen sind, unerlässlich ist, um die Effektstärke epigenetischer Mechanismen im ökologisch-evolutionären Kontext zu charakterisieren. KW - common-garden experiment KW - reciprocal transplant experiment KW - epigenetics KW - cytosine methylation KW - zebularine KW - adaptive differentiation KW - local adaptation KW - microsatellites KW - Solidago canadensis KW - Solidago gigantea KW - Amaranthus retroflexus KW - Chenopodium album KW - Erigeron canadensis KW - Erigeron annuus KW - Lactuca serriola KW - Senecio vulgaris KW - Sonchus oleraceus KW - Tripleurospermum inodorum KW - Veronica persica KW - Plantago major KW - Datura stramonium KW - Solanum nigrum KW - latitudinal clines KW - population structure KW - invasive KW - ruderal KW - non-native KW - Central Europe KW - Germany KW - AFLP KW - MSAP KW - spatial autocorrelation KW - genome scan KW - Gemeinschaftsgarten-Experiment KW - reziprokes Transplantationsexperiment KW - Epigenetik KW - Cytosin-Methylierung KW - Zebularin KW - adaptive Differenzierung KW - lokale Anpassung KW - Mikrosatelliten KW - Breitengrad KW - Ökokline KW - Populationsstruktur KW - invasiv KW - ruderal KW - nicht-einheimisch KW - Mitteleuropa KW - Deutschland KW - AFLP KW - MSAP KW - räumliche Autokorrelation KW - Genom-Scan Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568844 ER - TY - THES A1 - Raatz, Larissa T1 - Boon and bane T1 - Segen und Fluch BT - how semi-natural habitats shape biodiversity-driven ecosystem (dis)services in agricultural landscapes BT - wie naturnahe Habitate biodiversitätsbedingte Ökosystemdienstleistungen in Agrarlandschaften beeinflussen N2 - Semi-natural habitats (SNHs) in agricultural landscapes represent important refugia for biodiversity including organisms providing ecosystem services. Their spill-over into agricultural fields may lead to the provision of regulating ecosystem services such as biological pest control ultimately affecting agricultural yield. Still, it remains largely unexplored, how different habitat types and their distributions in the surrounding landscape shape this provision of ecosystem services within arable fields. Hence, in this thesis I investigated the effect of SNHs on biodiversity-driven ecosystem services and disservices affecting wheat production with an emphasis on the role and interplay of habitat type, distance to the habitat and landscape complexity. I established transects from the field border into the wheat field, starting either from a field-to-field border, a hedgerow, or a kettle hole, and assessed beneficial and detrimental organisms and their ecosystem functions as well as wheat yield at several in-field distances. Using this study design, I conducted three studies where I aimed to relate the impacts of SNHs at the field and at the landscape scale on ecosystem service providers to crop production. In the first study, I observed yield losses close to SNHs for all transect types. Woody habitats, such as hedgerows, reduced yields stronger than kettle holes, most likely due to shading from the tall vegetation structure. In order to find the biotic drivers of these yield losses close to SNHs, I measured pest infestation by selected wheat pests as potential ecosystem disservices to crop production in the second study. Besides relating their damage rates to wheat yield of experimental plots, I studied the effect of SNHs on these pest rates at the field and at the landscape scale. Only weed cover could be associated to yield losses, having their strongest impact on wheat yield close to the SNH. While fungal seed infection rates did not respond to SNHs, fungal leaf infection and herbivory rates of cereal leaf beetle larvae were positively influenced by kettle holes. The latter even increased at kettle holes with increasing landscape complexity suggesting a release of natural enemies at isolated habitats within the field interior. In the third study, I found that also ecosystem service providers benefit from the presence of kettle holes. The distance to a SNH decreased species richness of ecosystem service providers, whereby the spatial range depended on species mobility, i.e. arable weeds diminished rapidly while carabids were less affected by the distance to a SNH. Contrarily, weed seed predation increased with distance suggesting that a higher food availability at field borders might have diluted the predation on experimental seeds. Intriguingly, responses to landscape complexity were rather mixed: While weed species richness was generally elevated with increasing landscape complexity, carabids followed a hump-shaped curve with highest species numbers and activity-density in simple landscapes. The latter might give a hint that carabids profit from a minimum endowment of SNHs, while a further increase impedes their mobility. Weed seed predation was affected differently by landscape complexity depending on weed species displayed. However, in habitat-rich landscapes seed predation of the different weed species converged to similar rates, emphasising that landscape complexity can stabilize the provision of ecosystem services. Lastly, I could relate a higher weed seed predation to an increase in wheat yield even though seed predation did not diminish weed cover. The exact mechanisms of the provision of weed control to crop production remain to be investigated in future studies. In conclusion, I found habitat-specific responses of ecosystem (dis)service providers and their functions emphasizing the need to evaluate the effect of different habitat types on the provision of ecosystem services not only at the field scale, but also at the landscape scale. My findings confirm that besides identifying species richness of ecosystem (dis)service providers the assessment of their functions is indispensable to relate the actual delivery of ecosystem (dis)services to crop production. N2 - Naturnahe Habitate, wie zum Beispiel Hecken und Sölle, stellen wichtige Refugien für die Biodiversität in Agrarlandschaften dar, weil aus diesen Habitaten Organismen in die Agrarflächen einwandern und dort regulierende Ökosystemdienstleistungen, wie zum Beispiel biologische Schädlingsbekämpfung, erbringen können. Weitgehend unerforscht ist bisher, in welcher Art und Weise die verschiedenen Habitattypen und ihre Verteilung in der umgebenden Landschaft die Bereitstellung dieser Ökosystemdienstleistungen, die letztlich auch einen Einfluss auf die landwirtschaftlichen Erträge haben können, beeinflussen. Daher habe ich den Einfluss von naturnahen Habitattypen auf biodiversitätsbedingte Ökosystemdienstleistungen und ihre Auswirkung auf die Weizenproduktion untersucht. Der Schwerpunkt meiner Arbeit lag auf dem Einfluss und dem Zusammenspiel von Habitattyp, Entfernung zum naturnahen Habitat und der umgebenden Landschaftsvielfalt. Auf intensiv bewirtschafteten Weizenfeldern habe ich entlang von Transekten von der Feldgrenze in das Feld hinein Nützlinge und Schädlinge, Ökosystemfunktionen sowie den Weizenertrag ermittelt. In der ersten Studie habe ich am Feldrand für alle Habitattypen einen Ertragsverlust im Vergleich zur Feldmitte beobachtet, wobei Hecken die stärkste Ertragsreduktion aufwiesen. Dieses Resultat führe ich auf die Beschattung durch die hohe Vegetationsstruktur zurück. Um Ertragsverluste besser zu verstehen, habe ich in der zweiten Studie den Schädlingsbefall durch ausgewählte Weizenschädlinge sowie den direkten Einfluss der naturnahen Habitate auf die Schädlingsraten auf der Feld- und Landschaftsskala untersucht. Nur die Unkrautbedeckung konnte mit dem Ertragsverlust in Verbindung gebracht werden, wobei sie einen stärkeren Einfluss auf die Ernteerträge in der Nähe der naturnahen Habitate hatte. Darüber hinaus konnte ich zeigen, dass die Befallsraten von Blattpathogenen und die Fraßraten der Larven des Getreidehähnchens an Söllen erhöht waren. Letzteres stieg sogar an Söllen mit zunehmender Landschaftsvielfalt an, was auf den Wegfall natürlicher Feinde an isolierten Habitaten im Feldinneren, wie Söllen, schließen lässt. In meiner dritten Studie fand ich heraus, dass auch Ökosystemdienstleister, wie Laufkäfer sowie die Samenprädation von Unkräutern, von Söllen profitieren. Die Entfernung zu einem naturnahen Habitat verringerte den Artenreichtum der Ökosystemdienstleister, im Gegensatz zur Samenprädation, welche zur Feldmitte zunahm. Dies deutet darauf hin, dass eine höhere Nahrungsverfügbarkeit an Feldrändern die Prädation von Versuchssamen abgeschwächt haben könnte. Während mit zunehmender Landschaftsvielfalt die Artenanzahl an Unkräutern anstieg, war bei den Laufkäfern die höchste Artenzahl und Aktivitätsdichte in Landschaften mit geringer Vielfalt zu beobachten. Das lässt den Schluss zu, dass eine Minimalausstattung an naturnahen Habitaten für Laufkäfer vorteilhaft ist, während ein zu großer Anteil an naturnahen Habitaten ihre Mobilität behindern könnte. Die ausgelegten Samen wurden in habitatarmen Landschaften unterschiedlich stark gefressen, wohingegen sie sich in habitatreichen Landschaften anglichen. Dieses Resultat unterstreicht, dass Landschaftsvielfalt die Bereitstellung von Ökosystemdienstleistungen stabilisieren kann. Abschließend konnte ich zeigen, dass mit ansteigender Samenprädation von Unkräutern ein Anstieg des Weizenertrages einherging, wenn auch die Unkrautbedeckung nicht verringert wurde. Die genauen Mechanismen der Bereitstellung von natürlicher Unkrautbekämpfung für die Pflanzenproduktion sollten in zukünftigen Studien weiter untersucht werden. Zusammenfassend lässt sich sagen, dass die untersuchten Ökosystemdienstleister und ihre Schädlings- sowie Prädationsraten Habitatpräferenzen aufwiesen. Diese Tatsache unterstreicht die Notwendigkeit, die Auswirkungen verschiedener Habitattypen auf die Bereitstellung von Ökosystemdienstleistungen nicht nur auf der Feldskala, sondern auch auf der Landschaftsskala zu bewerten. Meine Ergebnisse bestätigen, dass neben der Aufnahme des Artenreichtums von Ökosystemdienstleistern die Bewertung ihrer Funktionen unerlässlich ist, um die tatsächliche Bereitstellung von Ökosystemdienstleistungen mit dem landwirtschaftlichen Ertrag in Beziehung zu setzen. KW - semi-natural habitat KW - agroecology KW - yield KW - pest KW - natural enemies KW - Agrarökologie KW - Nützlinge KW - Schädlinge KW - naturnahe Habitate KW - Ernte Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519653 ER - TY - THES A1 - Kahl, Sandra T1 - Evolutionary adaptive responses to rapid climate change in plants T1 - Evolutionäre Anpassungsstrategien von Pflanzen an den Klimawandel BT - a case study of the widely distributed species Silene vulgaris BT - ein Fallbeispiel der weit verbreiteten Art Silene vulgaris N2 - The ongoing climate change is altering the living conditions for many organisms on this planet at an unprecedented pace. Hence, it is crucial for the survival of species to adapt to these changing conditions. In this dissertation Silene vulgaris is used as a model organism to understand the adaption strategies of widely distributed plant species to the current climate change. Especially plant species that possess a wide geographic range are expected to have a high phenotypic plasticity or to show genetic differentiation in response to the different climate conditions they grow in. However, they are often underrepresented in research. In the greenhouse experiment presented in this thesis, I examined the phenotypic responses and plasticity in S. vulgaris to estimate its’ adaptation potential. Seeds from 25 wild European populations were collected along a latitudinal gradient and grown in a greenhouse under three different precipitation (65 mm, 75 mm, 90 mm) and two different temperature regimes (18°C, 21°C) that resembled a possible climate change scenario for central Europe. Afterwards different biomass and fecundity-related plant traits were measured. The treatments significantly influenced the plants but did not reveal a latitudinal difference in response to climate treatments for most plant traits. The number of flowers per individual however, showed a stronger plasticity in northern European populations (e.g., Swedish populations) where numbers decreased more drastically with increased temperature and decreased precipitation. To gain an even deeper understanding of the adaptation of S. vulgaris to climate change it is also important to reveal the underlying phylogeny of the sampled populations. Therefore, I analysed their population genetic structure through whole genome sequencing via ddRAD. The sequencing revealed three major genetic clusters in the S. vulgaris populations sampled in Europe: one cluster comprised Southern European populations, one cluster Western European populations and another cluster contained central European populations. A following analysis of experimental trait responses among the clusters to the climate-change scenario showed that the genetic clusters significantly differed in biomass-related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate-change scenario. In addition to the potential geographic and genetic adaptation differences to climate change this dissertation also deals with the response differences between the sexes in S. vulgaris. As a gynodioecious species populations of S. vulgaris consist of female and hermaphrodite individuals and the sexes can differ in their morphological traits which is known as sexual dimorphism. As climate change is becoming an important factor influencing plant morphology it remains unclear if and how different sexes may respond in sexually dimorphic species. To examine this question the sex of each individual plant was determined during the greenhouse experiment and the measured plant traits were analysed accordingly. In general, hermaphrodites had a higher number of flowers but a lower number of leaves than females. With regards to the climate change treatment, I found that hermaphrodites showed a milder negative response to higher temperatures in the number of flowers produced and in specific leaf area (SLA) compared to females. Synthesis – The significant treatment response in Silene vulgaris, independent of population origin in most traits suggests a high degree of universal phenotypic plasticity. Also, the three European intraspecific genetic lineages detected showed comparable parallel response patterns in half of the traits suggesting considerable phenotypic plasticity. Hence, plasticity might represent a possible adaptation strategy of this widely distributed species during ongoing and future climatic changes. The results on sexual dimorphism show that females and hermaphrodites are differing mainly in their number of flowers and females are affected more strongly by the experimental climate-change scenario. These results provide a solid knowledge basis on the sexual dimorphism in S. vulgaris under climate change, but further research is needed to determine the long-term impact on the breeding system for the species. In summary this dissertation provides a comprehensive insight into the adaptation mechanisms and consequences of a widely distributed and gynodioecious plant species and leverages our understanding of the impact of anthropogenic climate change on plants. N2 - Der derzeitige Klimawandel verändert die Lebensbedingungen für viele Tiere und Pflanzen auf unserem Planeten in nie da gewesenem Maße. Damit Arten überleben, ist es von besonderer Wichtigkeit, dass sich diese an die sich ändernden Klimabedingungen anpassen können. Die vorliegende Dissertation befasst sich mit der Modellpflanze Silene vulgaris und versucht zu ergründen, wie sich solch weit verbreitete Pflanzenarten an den Klimawandel anpassen. Dabei ist zu erwarten, dass sie eine hohe phänotypische Plastizität besitzen, durch die sie sich gut anpassen können oder, dass sie sich durch eine genetische Differenzierung als Antwort auf die vorherrschenden Umweltbedingungen auszeichnen. Im experimentellen Ansatz dieser Dissertation untersuchte ich daher die phänotypischen Anpassungen und die phänotypische Plastizität von S. vulgaris an ein mögliches Klimawandelszenario für Zentraleuropa. Dabei wurden die Samen von 25 europäischen Populationen gesammelt und in einem Gewächshausexperiment unter drei verschiedenen Niederschlagsbedingungen (65 mm, 75 mm, 90 mm) und zwei verschiedenen Temperaturbedingungen (18°C, 21°C) herangezogen. Im Anschluss wurden verschiedene Biomasse- und Fertilitätsmerkmale gemessen. Für ein tiefergehendes Verständnis der Anpassungsmöglichkeiten von S. vulgaris an den Klimawandel ist es zudem wichtig, auch die zugrundeliegende Phylogenie der Populationen zu verstehen. In diesem Zusammenhang nutzte ich eine genomweite Sequenziermethode mittels ddRAD. Die Bedingungen im Gewächshausexperiment beeinflussten die Pflanzen signifikant in ihren phänotypischen Merkmalen, jedoch ließ sich kein Unterschied zwischen Population unterschiedlicher Herkunft erkennen. Lediglich die Anzahl der Blüten zeigte eine größere Plastizität in nördlichen europäischen Populationen, wo sich die Blütenzahl stärker dezimierte unter höheren Temperaturen und stärkerer Trockenheit. Die populationsgenetische Analyse ergab drei distinkte phylogenetische Gruppen für die untersuchten europäischen Populationen von S. vulgaris: eine Gruppe beinhaltete südeuropäische Populationen aus Spanien und Südfrankreich, eine weitere Gruppe bestand aus den gesammelten Individuen der westfranzösischen Populationen, während die dritte Gruppe, die Populationen aus Mittel- und Nordeuropa enthielt. Diese genetischen Gruppen wurden anschließend ebenfalls der Merkmalsanalyse unter den Gewächshausbedingungen unterzogen. Dabei stellte sich heraus, dass sich die genetischen Gruppen in ihren phänotypischen Merkmalen unterschieden, jedoch eine ähnliche Anpassung ihrer Merkmale an die experimentellen Klimawandelbedingungen zeigten. Der dritte Aspekt dieser Dissertation befasste sich mit möglichen Anpassungsunterschieden zwischen den Geschlechtern in S. vulgaris. Als gynodiözische Art bestehen ihre Populationen sowohl aus weiblichen, also auch aus zwittrigen Individuen. Die phänotypischen Merkmale beider Geschlechter können sich dabei unterscheiden, was man als Sexualdimorphismus bezeichnet. Es ist bereits bekannt, dass sich Pflanzenmerkmale durch den anhaltenden Klimawandel bereits verändern, jedoch ist es nicht gut erforscht, ob und wie sich die unterschiedlichen Geschlechter bei einer sexuell dimorphen Art unter diesem Selektionsdruck verhalten. Während des Gewächshausexperiments wurden daher die Geschlechter der Individuen bestimmt und die phänotypischen Unterschiede zwischen weiblichen und zwittrigen Pflanzen analysiert. Allgemein lässt sich sagen, dass zwittrige Individuen mehr Blüten aber weniger Blätter hatten als weibliche. Im Hinblick auf die experimentellen Klimawandelbedingungen konnte ich zudem feststellen, dass Hermaphroditen in ihrer spezifischen Blattfläche und der Blütenanzahl weniger stark negativ auf höhere Temperaturen reagierten. Synthese – Die signifikanten Merkmalsanpassungen an die Gewächshausbedingungen waren unabhängig von der geographischen Herkunft oder genetischen Gruppe der Individuen. Dies lässt ein hohes Maß an universeller, phänotypischer Plastizität vermuten. Dementsprechend kann davon ausgegangen werden, dass phänotypische Plastizität ein möglicher Anpassungsmechanismus für diese weit verbreitete Art an den Klimawandel sein könnte. Im Hinblick auf den Sexualdimorphismus in S. vulgaris lässt sich sagen, dass sich beide Geschlechter vornehmlich in der Anzahl der Blüten unterscheiden und dass weibliche Pflanzen stärker von den Bedingungen des Gewächshausexperiments beeinflusst wurden. Diese Dissertation konnte damit erstmals darüber Aufschluss geben, wie sich S. vulgaris im Hinblick auf ihren Sexualdimorphismus unter Klimawandelbedingungen verhält. Weitere Forschung wird nun benötigt, um auch den Langzeiteffekt des Klimawandels auf das Fortpflanzungssystem dieser Art abschätzen zu können. Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit einen umfassenden Einblick in die Anpassungsmechanismen einer weit verbreiteten Pflanzenart an den anthropogenen Klimawandel gibt. Zudem bestärkt sie unser Verständnis der Auswirkungen, die sich daraus für eine gynodiözische Art, wie S. vulgaris ergeben. KW - Silene vulgaris KW - climate change KW - plant adaptation KW - Silene vulgaris KW - Klimawandel KW - Pflanzenanpassung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-556483 ER -