TY - THES A1 - Rothe, Viktoria T1 - Das Yamabe-Problem auf global-hyperbolischen Lorentz-Mannigfaltigkeiten N2 - Im Jahre 1960 behauptete Yamabe folgende Aussage bewiesen zu haben: Auf jeder kompakten Riemannschen Mannigfaltigkeit (M,g) der Dimension n ≥ 3 existiert eine zu g konform äquivalente Metrik mit konstanter Skalarkrümmung. Diese Aussage ist äquivalent zur Existenz einer Lösung einer bestimmten semilinearen elliptischen Differentialgleichung, der Yamabe-Gleichung. 1968 fand Trudinger einen Fehler in seinem Beweis und infolgedessen beschäftigten sich viele Mathematiker mit diesem nach Yamabe benannten Yamabe-Problem. In den 80er Jahren konnte durch die Arbeiten von Trudinger, Aubin und Schoen gezeigt werden, dass diese Aussage tatsächlich zutrifft. Dadurch ergeben sich viele Vorteile, z.B. kann beim Analysieren von konform invarianten partiellen Differentialgleichungen auf kompakten Riemannschen Mannigfaltigkeiten die Skalarkrümmung als konstant vorausgesetzt werden. Es stellt sich nun die Frage, ob die entsprechende Aussage auch auf Lorentz-Mannigfaltigkeiten gilt. Das Lorentz'sche Yamabe Problem lautet somit: Existiert zu einer gegebenen räumlich kompakten global-hyperbolischen Lorentz-Mannigfaltigkeit (M,g) eine zu g konform äquivalente Metrik mit konstanter Skalarkrümmung? Das Ziel dieser Arbeit ist es, dieses Problem zu untersuchen. Bei der sich aus dieser Fragestellung ergebenden Yamabe-Gleichung handelt es sich um eine semilineare Wellengleichung, deren Lösung eine positive glatte Funktion ist und aus der sich der konforme Faktor ergibt. Um die für die Behandlung des Yamabe-Problems benötigten Grundlagen so allgemein wie möglich zu halten, wird im ersten Teil dieser Arbeit die lokale Existenztheorie für beliebige semilineare Wellengleichungen für Schnitte auf Vektorbündeln im Rahmen eines Cauchy-Problems entwickelt. Hierzu wird der Umkehrsatz für Banachräume angewendet, um mithilfe von bereits existierenden Existenzergebnissen zu linearen Wellengleichungen, Existenzaussagen zu semilinearen Wellengleichungen machen zu können. Es wird bewiesen, dass, falls die Nichtlinearität bestimmte Bedingungen erfüllt, eine fast zeitglobale Lösung des Cauchy-Problems für kleine Anfangsdaten sowie eine zeitlokale Lösung für beliebige Anfangsdaten existiert. Der zweite Teil der Arbeit befasst sich mit der Yamabe-Gleichung auf global-hyperbolischen Lorentz-Mannigfaltigkeiten. Zuerst wird gezeigt, dass die Nichtlinearität der Yamabe-Gleichung die geforderten Bedingungen aus dem ersten Teil erfüllt, so dass, falls die Skalarkrümmung der gegebenen Metrik nahe an einer Konstanten liegt, kleine Anfangsdaten existieren, so dass die Yamabe-Gleichung eine fast zeitglobale Lösung besitzt. Mithilfe von Energieabschätzungen wird anschließend für 4-dimensionale global-hyperbolische Lorentz-Mannigfaltigkeiten gezeigt, dass unter der Annahme, dass die konstante Skalarkrümmung der konform äquivalenten Metrik nichtpositiv ist, eine zeitglobale Lösung der Yamabe-Gleichung existiert, die allerdings nicht notwendigerweise positiv ist. Außerdem wird gezeigt, dass, falls die H2-Norm der Skalarkrümmung bezüglich der gegebenen Metrik auf einem kompakten Zeitintervall auf eine bestimmte Weise beschränkt ist, die Lösung positiv auf diesem Zeitintervall ist. Hierbei wird ebenfalls angenommen, dass die konstante Skalarkrümmung der konform äquivalenten Metrik nichtpositiv ist. Falls zusätzlich hierzu gilt, dass die Skalarkrümmung bezüglich der gegebenen Metrik negativ ist und die Metrik gewisse Bedingungen erfüllt, dann ist die Lösung für alle Zeiten in einem kompakten Zeitintervall positiv, auf dem der Gradient der Skalarkrümmung auf eine bestimmte Weise beschränkt ist. In beiden Fällen folgt unter den angeführten Bedingungen die Existenz einer zeitglobalen positiven Lösung, falls M = I x Σ für ein beschränktes offenes Intervall I ist. Zum Schluss wird für M = R x Σ ein Beispiel für die Nichtexistenz einer globalen positiven Lösung angeführt. N2 - Yamabe claimed in 1960 that he had proven the following theorem: Any Riemannian metric g on a compact smooth manifold M of dimension n ≥ 3 is conformal to a metric with constant scalar curvature. An equivalent formulation of this theorem is the existence of a solution to a certain semilinear elliptic differential equation, the so-called Yamabe equation. In 1968 Trudinger found a mistake in Yamabe's paper and consequently many mathematicians dealt with this so-called Yamabe problem. In the 80s Trudinger, Aubin and Shoen were able to fix the mistake and prove that Yamabe's theorem was indeed true. This has many advantages, for example when analyzing a conformally invariant partial differential equation on compact Riemannian manifolds one can assume that the scalar curvature is constant. The question now arises whether the analogous statement on Lorentzian manifolds also applies. The Lorentzian Yamabe Problem can be stated as follows: Given a spatially compact globally hyperbolic Lorentzian manifold (M, g), does there exist a metric conformal to g with constant scalar curvature? The goal of this dissertation is to examine this problem. The Yamabe equation which arises from this question is a semilinear wave equation which must have a positive smooth solution. In the first part of this dissertation the local theory of existence of general semilinear wave equations for sections on vector bundles was developed. For this the inverse function theorem and already existing statements about the existence of solutions to linear wave equation on Lorentzian manifolds were used. It will be proven that there exists an almost global solution to the corresponding Cauchy problem for small initial data as well as a time local solution for arbitrary initial data if the nonlinearity fulfills certain conditions. The second part of the dissertation deals with the Yamabe equation on globally hyperbolic Lorentzian manifolds. First by using the results of the first part it will be proven that there exist initial data such that the Yamabe equation has an almost time global solution if the scalar curvature of the given metric is sufficiently close to a constant. Afterwards by using energy estimates it will be shown in the case of 4-dimensional Lorentzian manifolds that under the assumption that the constant scalar curvature of the conformal metric is non-positive there exists a global smooth solution to the Yamabe equation which is not necessarily positive. But it will be proven that the solution is positive on a compact time interval if the H2-Norm of the scalar curvature of the given metric is bounded on this time interval in a certain way or if the scalar curvature is negative and the gradient of the scalar curvature is bounded in a specific way. In both cases the existence of a global positive smooth solution follows, if the Lorentzian manifold has the form M = I x Σ where I is an open bounded time interval and Σ is a Riemannian manifold. At the end an example for the nonexistence of a global positive solution in the case of M= R x Σ will be presented. T2 - The Yamabe problem on globally hyperbolic Lorentzian manifolds KW - Yamabe-Problem KW - Yamabe problem KW - wave equation KW - globally hyperbolic KW - global-hyperbolisch KW - Wellengleichung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-486012 ER - TY - THES A1 - Hannes, Sebastian T1 - Boundary Value Problems for the Lorentzian Dirac Operator N2 - The index theorem for elliptic operators on a closed Riemannian manifold by Atiyah and Singer has many applications in analysis, geometry and topology, but it is not suitable for a generalization to a Lorentzian setting. In the case where a boundary is present Atiyah, Patodi and Singer provide an index theorem for compact Riemannian manifolds by introducing non-local boundary conditions obtained via the spectral decomposition of an induced boundary operator, so called APS boundary conditions. Bär and Strohmaier prove a Lorentzian version of this index theorem for the Dirac operator on a manifold with boundary by utilizing results from APS and the characterization of the spectral flow by Phillips. In their case the Lorentzian manifold is assumed to be globally hyperbolic and spatially compact, and the induced boundary operator is given by the Riemannian Dirac operator on a spacelike Cauchy hypersurface. Their results show that imposing APS boundary conditions for these boundary operator will yield a Fredholm operator with a smooth kernel and its index can be calculated by a formula similar to the Riemannian case. Back in the Riemannian setting, Bär and Ballmann provide an analysis of the most general kind of boundary conditions that can be imposed on a first order elliptic differential operator that will still yield regularity for solutions as well as Fredholm property for the resulting operator. These boundary conditions can be thought of as deformations to the graph of a suitable operator mapping APS boundary conditions to their orthogonal complement. This thesis aims at applying the boundary conditions found by Bär and Ballmann to a Lorentzian setting to understand more general types of boundary conditions for the Dirac operator, conserving Fredholm property as well as providing regularity results and relative index formulas for the resulting operators. As it turns out, there are some differences in applying these graph-type boundary conditions to the Lorentzian Dirac operator when compared to the Riemannian setting. It will be shown that in contrast to the Riemannian case, going from a Fredholm boundary condition to its orthogonal complement works out fine in the Lorentzian setting. On the other hand, in order to deduce Fredholm property and regularity of solutions for graph-type boundary conditions, additional assumptions for the deformation maps need to be made. The thesis is organized as follows. In chapter 1 basic facts about Lorentzian and Riemannian spin manifolds, their spinor bundles and the Dirac operator are listed. These will serve as a foundation to define the setting and prove the results of later chapters. Chapter 2 defines the general notion of boundary conditions for the Dirac operator used in this thesis and introduces the APS boundary conditions as well as their graph type deformations. Also the role of the wave evolution operator in finding Fredholm boundary conditions is analyzed and these boundary conditions are connected to notion of Fredholm pairs in a given Hilbert space. Chapter 3 focuses on the principal symbol calculation of the wave evolution operator and the results are used to proof Fredholm property as well as regularity of solutions for suitable graph-type boundary conditions. Also sufficient conditions are derived for (pseudo-)local boundary conditions imposed on the Dirac operator to yield a Fredholm operator with a smooth solution space. In the last chapter 4, a few examples of boundary conditions are calculated applying the results of previous chapters. Restricting to special geometries and/or boundary conditions, results can be obtained that are not covered by the more general statements, and it is shown that so-called transmission conditions behave very differently than in the Riemannian setting. N2 - Der Indexsatz für elliptische Operatoren auf geschlossenen Riemannschen Mannigfaltigkeiten von Atiyah und Singer hat zahlreiche Anwendungen in Analysis, Geometrie und Topologie, ist aber ungeeignet für eine Verallgemeinerung auf Lorentz-Mannigfaltigkeiten. Durch die Einführung nicht-lokaler Randbedingungen, gewonnen aus der Spektralzerlegung eines induzierten Randoperators, beweisen Atiyah, Patodi und Singer (APS) einen Indexsatz für den Fall kompakter Riemannscher Mannigfaltigkeiten mit Rand. Aufbauend auf diesem Resultat und mit Hilfe der Charakterisierung des Spektralflusses durch Philipps gelangen Bär und Strohmaier zu einem Indexsatz für den Dirac-Operator auf global hyperbolischen Lorentz-Mannigfaltigkeiten mit kompakten und raumartigen Cauchy-Hyperflächen. Ihr Ergebnis zeigt unter anderem, dass der Dirac Operator auf solchen Mannigfaltigkeiten und unter APS Randbedingungen ein Fredholm-Operator mit glattem Kern ist und das sein Index sich aus einer zum Riemannschen Fall analogen Formel berechnen lässt. Zurück im Riemannschen Setup zeigen Bär und Ballmann eine allgemeine Charakterisierung von Randbedingungen für elliptische Differentialoperatoren erster Ordnung die sowohl die Regularität von Lösungen, als auch Fredholm-Eigenschaft des resultierenden Operators garantieren. Die dort entwickelten Randbedingungen können als Deformation auf den Graphen einer geeigneten Abbildung der APS-Randbedingung auf ihr orthogonales Komplement verstanden werden. Die vorliegende Arbeit hat das Ziel die von Bär und Ballmann beschriebenen Randbedingungen auf den Dirac-Operator von global hyperbolischen Lorentz-Mannigfaltigkeiten zu übertragen um eine allgemeinere Klasse von Randbedingungen zu finden unter denen der resultierende Dirac-Operator Fredholm ist und einen glatten Lösungsraum hat. Weiterhin wird analysiert wie sich derartige Deformation von APS-Randbedingungen auf den Index solcher Operatoren auswirken und wie dieser aus den bekannten Resultaten für den APS-Index berechnet werden kann. Es wird unter anderem gezeigt, dass im Gegensatz zum Riemannschen Fall beim Übergang von Randbedingungen zu ihrem orthogonalen Komplement die Fredholm-Eigenschaft des Operators erhalten bleibt. Andererseits sind zusätzliche Annahme nötig um die Regularität von Lösungen, sowie die Fredholm-Eigenschaft für Graph-Deformationen im Fall von Lorentz-Mannigfaltigkeiten zu erhalten. Die Arbeit ist dabei wie folgt aufgebaut. In Kapitel 1 werden grundlegende Fakten zu Lorentzschen und Riemannschen Spin-Mannigfaltigkeiten, ihren Spinor-Bündeln und Dirac-Operatoren zusammengetragen. Diese Informationen dienen als Ausgangspunkt zur Definition und Analyse von Randbedingungen in späteren Kapiteln der Arbeit. Kapitel 2 definiert allgemein den Begriff der Randbedingung wie er in dieser Arbeit verwendet wird und führt zudem den sogenannten ''wave-evolution-Operator'' ein, der eine wichtige Rolle im Finden und Analysieren von Fredholm-Randbedingungen für den Dirac-Operator spielen wird. Zuletzt wird der Zusammenhang zwischen Fredholm-Paaren eines Hilbert-Raumes und Fredholm-Randbedingungen für den Dirac-Operator erklärt. Kapitel 3 beschäftigt sich mit der Berechnung des Hauptsymbols des wave-evolution-Operators und die dort erzielten Resultate werden verwendet um Fredholm-Eigenschaft, sowie Regularität von Lösungen für geeignete Deformationen von APS-Randbedingungen zu beweisen. Weiterhin werden hinreichende Bedingungen für (pseudo-)lokale Randbedingungen abgeleitet, die Fredholm-Eigenschaft und Regularität für den resultierenden Dirac-Operator garantieren. Kapitel 4 zeigt, aufbauend auf den Ergebnissen der Kapitel 1-3, einige Beispiele von lokalen und nicht-lokalen Randbedingungen für den Dirac-Operator. Unter gewissen Einschränkungen an die Geometrie der zugrunde liegenden Mannigfaltigkeit bzw. den gestellten Randbedingungen können Ergebnisse erzielt werden die in den allgemeineren Resultaten der vorangehenden Kapitel nicht enthalten sind. Zuletzt werden sogenannte Transmission-Bedingungen analysiert und die Unterschiede dieser Randbedingungen zum Riemannschen Fall aufgezeigt. T2 - Randwertprobleme für den Lorentschen Diracoperator KW - Dirac Operator KW - Boundary Value Problems KW - Lorentzian Geometry KW - Randwertprobleme KW - Diracoperator KW - Lorentzgeometrie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548391 ER - TY - THES A1 - Gehring, Penelope T1 - Non-local boundary conditions for the spin Dirac operator on spacetimes with timelike boundary T1 - Nicht-lokale Randbedingungen für den spinorialen Dirac-Operator auf Raumzeiten mit zeitartigen Rand N2 - Non-local boundary conditions – for example the Atiyah–Patodi–Singer (APS) conditions – for Dirac operators on Riemannian manifolds are rather well-understood, while not much is known for such operators on Lorentzian manifolds. Recently, Bär and Strohmaier [15] and Drago, Große, and Murro [27] introduced APS-like conditions for the spin Dirac operator on Lorentzian manifolds with spacelike and timelike boundary, respectively. While Bär and Strohmaier [15] showed the Fredholmness of the Dirac operator with these boundary conditions, Drago, Große, and Murro [27] proved the well-posedness of the corresponding initial boundary value problem under certain geometric assumptions. In this thesis, we will follow the footsteps of the latter authors and discuss whether the APS-like conditions for Dirac operators on Lorentzian manifolds with timelike boundary can be replaced by more general conditions such that the associated initial boundary value problems are still wellposed. We consider boundary conditions that are local in time and non-local in the spatial directions. More precisely, we use the spacetime foliation arising from the Cauchy temporal function and split the Dirac operator along this foliation. This gives rise to a family of elliptic operators each acting on spinors of the spin bundle over the corresponding timeslice. The theory of elliptic operators then ensures that we can find families of non-local boundary conditions with respect to this family of operators. Proceeding, we use such a family of boundary conditions to define a Lorentzian boundary condition on the whole timelike boundary. By analyzing the properties of the Lorentzian boundary conditions, we then find sufficient conditions on the family of non-local boundary conditions that lead to the well-posedness of the corresponding Cauchy problems. The well-posedness itself will then be proven by using classical tools including energy estimates and approximation by solutions of the regularized problems. Moreover, we use this theory to construct explicit boundary conditions for the Lorentzian Dirac operator. More precisely, we will discuss two examples of boundary conditions – the analogue of the Atiyah–Patodi–Singer and the chirality conditions, respectively, in our setting. For doing this, we will have a closer look at the theory of non-local boundary conditions for elliptic operators and analyze the requirements on the family of non-local boundary conditions for these specific examples. N2 - Über nicht-lokale Randbedingungen – zum Beispiel dieAtiyah–Patodi–Singer (APS)-Bedingungen – für Dirac Operatoren auf Riemannschen Mannigfaltigkeiten ist recht viel bekannt, während für die hyperbolischen Dirac Operatoren auf Lorentz-Mannigfaltigkeiten dies noch nicht der Fall ist. Kürzlich haben Bär und Strohmaier [15] und Drago, Große und Murro [27] APS-ähnliche Bedingungen für den Spin Dirac Operator auf Lorentz-Mannigfaltigkeiten mit raumartigen bzw. zeitartigen Rand eingeführt. Während Bär und Strohmaier [15] zeigten, dass der Dirac Operator mit diesen Randbedingungen Fredholm ist, bewiesen Drago, Große und Murro [27] die Wohlgestelltheit des entsprechenden Anfangsrandwertproblems unter bestimmten geometrischen Annahmen. In dieser Arbeit werden wir in die Fußstapfen der letztgenannten Autoren treten und diskutieren, ob die APS-ähnlichen Bedingungen für Dirac Operatoren auf Lorentz-Mannigfaltigkeiten mit zeitartigen Rand durch allgemeinere Bedingungen ersetzt werden können, sodass die zugehörigen Anfangsrandwertprobleme immer noch wohlgestellt sind. Wir betrachten Randbedingungen, die in der Zeit lokal und in den Raumrichtungen nicht-lokal sind. Genauer gesagt verwenden wir die Raumzeitblätterung, die sich aus der Cauchy Zeitfunktion ergibt, und spalten den Dirac Operator entlang dieser Foliation auf. Daraus ergibt sich eine Familie elliptischer Operatoren, die jeweils auf Spinoren des Spinbündels über den entsprechenden Zeitschnitt wirken. Die Theorie der elliptischen Operatoren stellt dann sicher, dass wir Familien von nichtlokalen Randbedingungen bezüglich dieser Familie von Operatoren finden können. Im weiteren Verlauf verwenden wir solche Familien von Randbedingungen, um eine Lorentzsche Randbedingung auf dem gesamten zeitartigen Rand zu definieren. Durch das Analysieren der Lorentzschen Randbedingungen finden wir dann hinreichende Bedingungen für die Familie der nicht-lokalen Randbedingungen, die zur Wohlgestelltheit der entsprechenden Cauchy-Probleme führen. Die Wohlgestelltheit selbst wird dann mit Hilfe klassischer Methoden bewiesen, einschließlich Energieabschätzungen und Annäherung durch Lösungen der regularisierten Probleme. Außerdem verwenden wir diese Theorie, um explizite Randbedingungen für den Lorentzschen Dirac Operator zu konstruieren. Genauer gesagt werden wir zwei Beispiele für Randbedingungen diskutieren - das Analogon der Atiyah-Patodi-Singer- bzw. Chiralitäts-Bedingungen für unseren Fall. Dazu werden wir uns die Theorie der nicht-lokalen Randbedingungen für elliptische Operatoren genauer ansehen und die Anforderungen an die Familie der nicht-lokalen Randbedingungen für diese Beispiele analysieren. KW - Dirac operator KW - Diracoperator KW - spacetimes with timelike boundary KW - Raumzeiten mit zeitartigen Rand KW - boundary conditions KW - Randbedingungen KW - initial boundary value problem KW - Anfangsrandwertproblem Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577755 ER -