TY - THES A1 - Schjeide, Brit-Maren T1 - Development and characterization of the MoN-Light BoNT assay to determine the toxicity of botulinum neurotoxin in motor neurons differentiated from CRISPR-modified induced pluripotent stem cells T1 - Entwicklung und Charakterisierung des MoN-Light BoNT-Tests zur Bestimmung der Toxizität von Botulinum-Neurotoxin in Motorneuronen, die aus CRISPR-modifizierten induzierten pluripotenten Stammzellen differenziert wurden N2 - Botulinum neurotoxin (BoNT) is produced by the anaerobic bacterium Clostridium botulinum. It is one of the most potent toxins found in nature and can enter motor neurons (MN) to cleave proteins necessary for neurotransmission, resulting in flaccid paralysis. The toxin has applications in both traditional and esthetic medicine. Since BoNT activity varies between batches despite identical protein concentrations, the activity of each lot must be assessed. The gold standard method is the mouse lethality assay, in which mice are injected with a BoNT dilution series to determine the dose at which half of the animals suffer death from peripheral asphyxia. Ethical concerns surrounding the use of animals in toxicity testing necessitate the creation of alternative model systems to measure the potency of BoNT. Prerequisites of a successful model are that it is human specific; it monitors the complete toxic pathway of BoNT; and it is highly sensitive, at least in the range of the mouse lethality assay. One model system was developed by our group, in which human SIMA neuroblastoma cells were genetically modified to express a reporter protein (GLuc), which is packaged into neurosecretory vesicles, and which, upon cellular depolarization, can be released – or inhibited by BoNT – simultaneously with neurotransmitters. This assay has great potential, but includes the inherent disadvantages that the GLuc sequence was randomly inserted into the genome and the tumor cells only have limited sensitivity and specificity to BoNT. This project aims to improve these deficits, whereby induced pluripotent stem cells (iPSCs) were genetically modified by the CRISPR/Cas9 method to insert the GLuc sequence into the AAVS1 genomic safe harbor locus, precluding genetic disruption through non-specific integrations. Furthermore, GLuc was modified to associate with signal peptides that direct to the lumen of both large dense core vesicles (LDCV), which transport neuropeptides, and synaptic vesicles (SV), which package neurotransmitters. Finally, the modified iPSCs were differentiated into motor neurons (MNs), the true physiological target of BoNT, and hypothetically the most sensitive and specific cells available for the MoN-Light BoNT assay. iPSCs were transfected to incorporate one of three constructs to direct GLuc into LDCVs, one construct to direct GLuc into SVs, and one “no tag” GLuc control construct. The LDCV constructs fused GLuc with the signal peptides for proopiomelanocortin (hPOMC-GLuc), chromogranin-A (CgA-GLuc), and secretogranin II (SgII-GLuc), which are all proteins found in the LDCV lumen. The SV construct comprises a VAMP2-GLuc fusion sequence, exploiting the SV membrane-associated protein synaptobrevin (VAMP2). The no tag GLuc expresses GLuc non-specifically throughout the cell and was created to compare the localization of vesicle-directed GLuc. The clones were characterized to ensure that the GLuc sequence was only incorporated into the AAVS1 safe harbor locus and that the signal peptides directed GLuc to the correct vesicles. The accurate insertion of GLuc was confirmed by PCR with primers flanking the AAVS1 safe harbor locus, capable of simultaneously amplifying wildtype and modified alleles. The PCR amplicons, along with an insert-specific amplicon from candidate clones were Sanger sequenced to confirm the correct genomic region and sequence of the inserted DNA. Off-target integrations were analyzed with the newly developed dc-qcnPCR method, whereby the insert DNA was quantified by qPCR against autosomal and sex-chromosome encoded genes. While the majority of clones had off-target inserts, at least one on-target clone was identified for each construct. Finally, immunofluorescence was utilized to localize GLuc in the selected clones. In iPSCs, the vesicle-directed GLuc should travel through the Golgi apparatus along the neurosecretory pathway, while the no tag GLuc should not follow this pathway. Initial analyses excluded the CgA-GLuc and SgII-GLuc clones due to poor quality protein visualization. The colocalization of GLuc with the Golgi was analyzed by confocal microscopy and quantified. GLuc was strongly colocalized with the Golgi in the hPOMC-GLuc clone (r = 0.85±0.09), moderately in the VAMP2-GLuc clone (r = 0.65±0.01), and, as expected, only weakly in the no tag GLuc clone (r = 0.44±0.10). Confocal microscopy of differentiated MNs was used to analyze the colocalization of GLuc with proteins associated with LDCVs and SVs, SgII in the hPOMC-GLuc clone (r = 0.85±0.08) and synaptophysin in the VAMP2-GLuc clone (r = 0.65±0.07). GLuc was also expressed in the same cells as the MN-associated protein, Islet1. A significant portion of GLuc was found in the correct cell type and compartment. However, in the MoN-Light BoNT assay, the hPOMC-GLuc clone could not be provoked to reliably release GLuc upon cellular depolarization. The depolarization protocol for hPOMC-GLuc must be further optimized to produce reliable and specific release of GLuc upon exposure to a stimulus. On the other hand, the VAMP2-GLuc clone could be provoked to release GLuc upon exposure to the muscarinic and nicotinic agonist carbachol. Furthermore, upon simultaneous exposure to the calcium chelator EGTA, the carbachol-provoked release of GLuc could be significantly repressed, indicating the detection of GLuc was likely associated with vesicular fusion at the presynaptic terminal. The application of the VAMP2-GLuc clone in the MoN-Light BoNT assay must still be verified, but the results thus far indicate that this clone could be appropriate for the application of BoNT toxicity assessment. N2 - Botulinum neurotoxin (BoNT) wird von dem obligat anaeroben Bakterium Clostridium botulinum produziert. Es ist eines der giftigsten natürlich vorkommenden Toxine. Nach Aufnahme in den Körper dringt es in Motorneurone ein und spaltet spezifische Proteine, die für die Freisetzung des Neurotransmitters Acetylcholin notwendig sind. Dadurch kommt es zu einer schlaffen Lähmung der Muskulatur, die zu einer peripheren Asphyxie führt. Trotz seiner hohen Toxizität wird BoNT als Therapeutikum in der klassischen und kosmetischen Medizin genutzt. Da die Aktivität des biosynthetisch gewonnenen Toxins zwischen einzelnen Chargen trotz gleicher Proteinkonzentration stark variiert, muss die Aktivität jeder Präparation getestet werden. Dafür ist der Goldstandard der Mausletalitäts-Test, bei dem den Tieren unterschiedliche Dosen des Toxins injiziert werden und die Dosis ermittelt wird, bei der die Hälfte der Tiere verstirbt. Wegen der damit verbundenen ethischen Probleme wird nach Ersatzverfahren für diesen Tierversuch gesucht. Ein Ersatzverfahren muss folgende Bedingungen erfüllen: Es muss humanspezifisch sein; alle Teilschritte der BoNT-Wirkung messen; und eine hohe Empfindlichkeit haben, die in der gleichen Größenordnung wie der Maus-Letalitätstest liegt. Es wurde bereits ein Testsystem von unserer Gruppe entwickelt, bei dem humane SIMA-Neuroblastomzellen genetisch so modifiziert wurden, dass sie ein Reporterprotein (GLuc) exprimieren. Dieses wurde in neurosekretorische Vesikel verpackt und durch Depolarisation der Zellen gleichzeitig mit Neurotransmittern freigesetzt. Die Freisetzung wurde durch BoNT gehemmt. Obwohl dieser Assay großes Potential hat, wird seine Anwendbarkeit durch inhärente Nachteile eingeschränkt, da die GLuc-Sequenz zufällig in das Genom eingefügt wurde und die Tumorzellen nur eine begrenzte Sensitivität und Spezifität gegenüber BoNT haben. Diese Dissertation hatte zum Ziel, diese Defizite zu verbessern. Zu diesem Zweck wurden induzierte pluripotente Stammzellen (iPSCs) durch die CRISPR/Cas9-Methode genetisch modifiziert, um die GLuc-Sequenz in den genomischen Safe-Harbor-Lokus AAVS1 einzufügen, wodurch ausgeschlossen wird, dass durch unspezifische Integrationen ins Genom die Funktion anderer Gene gestört wird. Darüber hinaus wurde GLuc so modifiziert, dass sie mit Signalpeptiden versehen wurde, die sie zum Lumen sowohl von „Large Dense Core“ Vesikeln (LDCV), die Neuropeptide transportieren, als auch von synaptischen Vesikeln (SV), die Neurotransmitter verpacken, führen. Schließlich wurden die modifizierten iPSCs in Motorneurone (MNs) differenziert, der eigentlichen physiologischen Zielstruktur von BoNT, die mutmaßlich am empfindlichsten und spezifischsten auf BoNT reagieren und daher für den MoN-Light BoNT-Assay am geeignetsten sein sollten. iPSCs wurden transfiziert, um eines von drei Konstrukten zu integrieren. 1) ein Konstrukt, das GLuc in LDCVs leitet, 2) ein Konstrukt, das GLuc durch Fusion mit VAMP2 in SVs leitet und 3) ein "no tag" GLuc-Kontrollkonstrukt. Die LDCV-Konstrukte enthielten die Signalpeptide Proopiomelanocortin (hPOMC), Chromogranin-A (CgA) und Secretogranin II (SgII). Die VAMP2-GLuc-Fusion transportiert GLuc in SVs, so dass Neurotransmitter und GLuc gemeinsam und nicht, wie bei den anderen Konstrukten parallel, aus unterschiedlichen Vesikeln freigesetzt werden. Die "no tag GLuc"-Kontrolle wurde erstellt, um die Lokalisation von GLuc, die ohne Sortierungssignal in der Zelle exprimiert wird, mit der GLuc mit Sortierungssignalen für die unterschiedlichen Vesikel zu vergleichen. Die Klone wurden charakterisiert, um sicherzustellen, dass die GLuc-Sequenz ausschließlich in den AAVS1-Safe-Harbor-Lokus eingebaut wurde und dass die Signalpeptide GLuc zu den richtigen Vesikeln leiten. Die korrekte Insertion von GLuc wurde durch PCR mit Primern bestätigt, die den AAVS1-Lokus flankieren und in der Lage sind, gleichzeitig Wildtyp- und modifizierte Allele zu amplifizieren. Mögliche Integrationen außerhalb der Zielregion wurden mit der neu entwickelten dc-qcnPCR analysiert, wobei die Insert-DNA mittels qPCR gegen autosomal und geschlechts-chromosomal kodierte Gene quantifiziert wurde. Auch wenn die Mehrzahl der analysierten Klone Off-Target-Integrationen enthielt, konnte für jedes Konstrukt mindestens ein vollständig On-Target-homozygoter Klon identifiziert werden. Schließlich wurden die GLuc in ausgewählten Klonen durch Immunfluoreszenz lokalisiert. In iPSCs sollte die GLuc mit Sortierungssequenzen für Vesikel durch den Golgi-Apparat entlang des neurosekretorischen Weges wandern, während die „no tag“ GLuc diesem Weg nicht folgen sollte. Anfängliche Analysen schlossen die CgA-GLuc- und SgII-GLuc-Klone aufgrund der schlechten Qualität der Proteinvisualisierung aus. Die Kolokalisation von GLuc mit dem Golgi-Apparat wurde mittels konfokaler Mikroskopie analysiert und quantifiziert. GLuc war im hPOMC-GLuc-Klon sehr stark (r = 0,85±0,09), im VAMP2-GLuc-Klon mäßig (r = 0,65±0,01) und im no tag GLuc-Klon erwartungsgemäß nur schwach (r = 0,44±0,10) mit Golgi-Markern assoziiert. Nach der Differenzierung in MNs wurde die Koexpression von GLuc mit dem MN-assoziierten Protein Islet1 bestätigt. Konfokale Mikroskopie von MNs wurde angewandt, um die Kolokalisation von GLuc mit Proteinen zu quantifizieren, die mit LDCVs und SVs assoziiert sind, nämlich SgII mit der hPOMC-GLuc (r = 0,85±0,08) und Synaptophysin mit VAMP2-GLuc (r = 0,65±0,07). Ein signifikanter Anteil von GLuc wurde im richtigen Zelltyp und Kompartiment gefunden. Im MoN-Light BoNT-Assay wurde die GLuc jedoch nicht zuverlässig durch Depolarisation aus dem hPOMC-GLuc-Klon freigesetzt. Das für die SIMA-hPOMC-Gluc-Zellen entwickelte Depolarisationsprotokoll muss für hPOMC-GLuc weiter optimiert werden, um eine zuverlässige und spezifische Freisetzung von GLuc bei Exposition gegenüber einem Stimulus zu erreichen. Andererseits konnte die GLuc aus dem VAMP2-GLuc-Klon durch Stimulation mit dem muskarinischen und nikotinischen Agonisten Carbachol freigesetzt werden. Die Carbachol-abhängige Freisetzung der GLuc konnte mit dem Calcium-Chelator EGTA unterdrückt werden, was darauf hindeutet, dass die Freisetzung der GLuc wahrscheinlich von der Fusion synaptischer Vesikel am präsynaptischen Terminal abhängig ist. Die Anwendung des VAMP2-GLuc-Klons im MoN-Light BoNT-Assay muss noch verifiziert werden, aber die bisherigen Ergebnisse deuten darauf hin, dass dieser Klon für die Anwendung der BoNT-Toxizitätsbewertung geeignet sein könnte. KW - Induced pluripotent stem cells KW - Alternative to animal testing KW - Botulinum neurotoxin KW - Motor neurons KW - CRISPR/Cas9 KW - induzierte pluripotente Stammzellen KW - alternative zu Tierversuchen KW - Botulinumtoxine KW - Motorneurone KW - CRISPR/Cas9 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516278 ER - TY - THES A1 - Wetzel, Alexandra T1 - Epigenetische Regulation des Epstein-Barr Virus-induzierten Gens 3 (EBI3) und dessen Bedeutung bei Colitis ulcerosa N2 - Epigenetische Mechanismen spielen eine entscheidende Rolle bei der Pathogenese von Colitis ulcerosa (CU). Ihr Einfluss auf das beobachtete Ungleichgewicht zwischen pro- und anti-inflammatorischen Cytokinen ist hingegen weitgehend unerforscht. Einige der wichtigsten immunmodulatorischen Cytokine sind die Mitglieder der heterodimeren Interleukin- (IL-) 12-Familie, die durch das Kombinieren einer der drei α-Ketten (IL-12p35, IL-27p28, IL-23p19) mit den ß-Untereinheiten IL-12p40 oder EBI3 (Epstein-Barr Virus-induziertes Gen 3) charakterisiert sind. IL-35 (IL-12p35/EBI3) spielt eine bedeutende anti-inflammatorische Rolle bei verschiedenen Erkrankungen, wohingegen seine Level bei chronischen Entzündungen erniedrigt sind. Eine mögliche Ursache könnte eine transkriptionelle Stilllegung über epigenetische Modifikationen sein. Tatsächlich konnte durch die Stimulation mit dem DNA-Methyltransferase-Inhibitor (DNMTi) Decitabin (DAC; Dacogen®) eine Induktion von EBI3 in humanen Epithelzellen aus gesundem Colon (HCEC) erreicht werden, die als Modell für ein lokales Entzündungsgeschehen dienten. Diese Regulation über DNA-Methylierung konnte in weiteren humanen Zellen unterschiedlichen Ursprungs sowie durch Stimulation von HCEC-Zellen mit zwei weiteren DNMTi, dem Cytosin-Analogon Azacytidin (AZA; Vidaza®) und dem natürlich vorkommenden, epigenetisch wirksamen Polyphenol Epigallocatechingallat (EGCG), verifiziert werden. Die kombinierte Inkubation mit Tumor-Nekrose-Faktor α (TNFα) resultierte jeweils in einer über-additiven Induktion von EBI3. Weiterführende Untersuchungen zeigten, dass TNFα trotz Beeinflussung der epigenetischen DNMT- und Ten-eleven Translocation- (TET-) Enzyme keinen Einfluss auf die globalen Methylierungs- oder Hydroxymethylierungslevel hatte, jedoch eine genspezifische DNA-Hypomethylierung im EBI3-Promotor induzierte. Durch Nutzung verschiedener Inhibitoren konnte darüber hinaus nachgewiesen werden, dass der beobachtete synergistische Effekt der gemeinsamen DAC und TNFα-Stimulation hauptsächlich über NFκB (Nuclear factor “kappa-light-chain-enhancer” of activated B-cells) vermittelt wird. Ein Teil verläuft dabei über p38 MAPK (mitogen-activated protein kinases), während die JNK- (c-Jun N-terminale Kinasen-) und ERK- (extracellular-signal-regulated kinases) Signalwege keine Rolle spielen. In der vorliegenden Arbeit wurde zudem gezeigt, dass die DNA-Hypomethylierung während eines entzündlichen Zustandes auch in einer erhöhten EBI3-Proteinexpression resultiert. Die Höhe der immunologisch detektierten Banden wies auf eine Dimerbildung sowohl im Zelllysat als auch im Überstand hin. Humane Colonepithelzellen sind demnach in der Lage, Cytokine zu bilden und zu sezernieren, was die Bedeutung von Nicht-Immunzellen bei der lokalen Immunantwort unterstreicht. Mittels Genexpressionsanalysen wurden IL-12p35 und IL-23p19 als mögliche Bindungspartner identifiziert. Aufgrund kreuzreaktiver Antikörper ist ein direkter Nachweis der EBI3-Dimere derzeit nicht möglich. Die stattdessen genutzte Kombination verschiedener Methoden dient als geeigneter Ersatz für die problematischen Antikörper-basierten Analysen wie Immunpräzipitation oder ELISA. Durch molekularbiologische, immunologische und massenspektrometrische Methoden konnte IL-35 identifiziert werden, während IL-39 (IL-23p19/EBI3) nicht detektiert wurde. Dies ist in Einklang mit den Erkenntnissen mehrerer Forschungsgruppen, die eine Bildung des nativen humanen Dimers aus IL-23p19 und EBI3 bezweifeln. Des Weiteren wurde die biologische Aktivität des behandlungsinduzierten IL 35-Proteins durch einen Funktionsassay nachgewiesen. Neben einer DNMTi-bedingten transkriptionellen Aktivierung konnte eine Regulation von EBI3 über Histonacetylierungen gezeigt werden. Der EBI3-induzierende Effekt des Histondeacetylasen-Inhibitors (HDACi) Trichostatin A (TSA) wurde durch SAHA (suberoylanilide hydroxamic acid (Vorinostat; Zolinza®)) verifiziert. Ähnlich zu der Stimulation mit den hypomethylierenden Substanzen wurde ein synergistischer Effekt bei paralleler Inkubation mit TNFα beobachtet, der in einer gesteigerten Bildung des EBI3-Proteins resultierte. Um die Befunde in einem komplexeren in vivo-Modell zu untersuchen, wurde eine chronische Colitis in Ebi3-defizienten Mäusen und dem dazugehörigen Wildtypstamm C57BL/6 durch zyklische Applikation von Natriumdextransulfat (Dextran sodium sulfate (DSS)) induziert. Der Vergleich klinischer Parameter wie Mortalitätsrate und Körper- sowie Milzgewicht wies bei Abwesenheit von Ebi3 signifikant stärkere colitische Symptome auf. Dies bestätigte die zentrale Rolle von Ebi3 in der Colitisentwicklung und deutete auf eine bevorzugte Bildung des anti-inflammatorisch wirkenden IL-35 statt des pro-inflammatorischen IL-39 in den Wildtyptieren hin. Durch zusätzliche therapeutische Behandlung der C57BL/6-Mäuse nach der DSS-Gabe konnte die in der Literatur beschriebene positive Wirkung von SAHA auf die Colitismanifestation bestätigt werden. Im Gegensatz dazu war der HDACi in den Ebi3-defizienten Tieren nicht in der Lage, die colitischen Parameter zu verbessern beziehungsweise verschlimmerte den Krankheitsphänotyp. Expressionsanalysen von Up- und Downstream-Target-Genen lieferten weitere Hinweise darauf, dass bei Anwesenheit von Ebi3 IL-35 statt IL-39 gebildet wird, was in Einklang mit den in vitro-Untersuchungen steht. Die vorliegende Arbeit konnte durch den Vergleich der C57BL/6-Mäuse mit den Ebi3-defizienten Tieren neue Erkenntnisse über die Wirkungsweise von SAHA erbringen. Histonacetylierende Bedingungen verbessern colitische Symptome über einen Mechanismus, der die epigenetische Induktion von Ebi3 mit nachfolgender IL-35-Bildung involviert. Durch Kooperation der epigenetischen Mechanismen Hypomethylierung und Histonacetylierung wurde der stärkste Effekt auf die EBI3-Induktion bewirkt. Insgesamt konnte in der vorliegenden Arbeit durch in vitro- und in vivo-Analysen die epigenetische und NFκB-vermittelte Induktion von EBI3 über DNA-Demethylierung und Histonacetylierung mit nachfolgender IL-35-Bildung und –Sezernierung nachgewiesen werden. Da IL-35 in der Lage ist, colitische Symptome zu mildern, stellt die epigenetische Reaktivierbarkeit von EBI3 durch DNMTi und HDACi eine vielversprechende Alternative für die derzeit genutzten, oft nicht oder nur kurzfristig wirksamen Therapien bei der Behandlung einer CU dar. Einer übermäßigen Immunantwort während schubweiser entzündlicher Phasen könnte entgegengewirkt und Komplikationen wie die Bildung Colitis-assoziierter Karzinome verhindert werden. N2 - Aberrant epigenetic alterations are becoming increasingly relevant in the development of multiple diseases. Epigenetic mechanisms also play a crucial role in the pathogenesis of ulcerative colitis (CU). In contrast, their influence on the observed imbalance between pro- and anti-inflammatory cytokines is largely unexplored. Several of the most important immunomodulatory cytokines are the members of the heterodimeric interleukin- (IL-) 12 family, which are characterized by combining one of the three α-chains (IL-12p35, IL-27p28, IL-23p19) with the ß-subunits IL-12p40 or EBI3 (Epstein-Barr virus induced gene 3). IL-35 (IL-12p35/EBI3) plays a significant anti-inflammatory role in various diseases, while its levels are decreased in chronic inflammation. One possible reason could be transcriptional silencing via epigenetic modifications. Indeed, stimulation with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC; Dacogen®) resulted in reactivation of EBI3 in Human Colon Epithelial Cells (HCEC) generated from healthy tissue, which served as a model for a local inflammatory process. This regulation via DNA methylation could be verified in other human cells of different origin as well as by stimulating HCEC cells with two additional DNMTi, the cytosine analog azacytidine (AZA; Vidaza®) and the naturally occurring, epigenetically active polyphenol epigallocatechin gallate (EGCG). Combined incubation with tumor necrosis factor α (TNFα) resulted in synergistic induction of EBI3. Further studies showed that TNFα had no effect on global methylation or hydroxymethylation levels despite its influence on epigenetic DNMT and ten-eleven translocation (TET) enzymes, but induced gene-specific DNA hypomethylation in the EBI3 promoter. Moreover, by using several inhibitors, it has been demonstrated that the synergistic effect of DAC and TNFα stimulation is mediated mainly via NFκB (nuclear factor "kappa-light-chain-enhancer" of activated B-cells). Part of this occurs via p38 MAPK (mitogen-activated protein kinases), while the JNK (c-Jun N-terminal kinases) and ERK (extracellular-signal-regulated kinases) signaling pathways are not involved. In the present work, it was also shown that DNA hypomethylation during an inflammatory condition also results in increased EBI3 protein expression. The level of immunologically detected bands indicated dimer formation in both cell lysate and supernatant. Human epithelial cells are therefore capable of producing and secreting cytokines, underlining the importance of non-immune cells in the local immune response. Gene expression analyses identified IL-12p35 and IL-23p19 as possible binding partners. Due to cross-reactive antibodies, direct detection of EBI3 dimers is currently not possible. The combination of different methods used instead serves as a suitable alternative to the problematic antibody-based analyses such as immunoprecipitation or ELISA. Molecular biology, immunology, and mass spectrometry methods identified IL-35, whereas IL-39 (IL-23p19/EBI3) was not detected. This is in agreement with the findings of several research groups that doubt formation of the native human dimer. Furthermore, the biological activity of treatment-induced IL-35 protein was detected by a functional assay. In addition to DNMTi-induced reactivation, regulation of EBI3 via histone acetylation was demonstrated. The EBI3-inducing effect of the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) was verified by SAHA (suberoylanilide hydroxamic acid (Vorinostat; Zolinza®)). Similar to stimulation with the hypomethylating agents, a synergistic effect was observed with parallel incubation with TNFα, resulting in increased EBI3 protein formation. To investigate the effects in a more complex in vivo model, chronic colitis was induced in Ebi3-deficient mice and the corresponding wild-type strain C57BL/6 by cyclic application of dextran sodium sulfate (DSS). Comparison of clinical parameters such as mortality rate and body as well as spleen weight showed significantly more severe colitic symptoms in the absence of Ebi3. This confirmed the central role of Ebi3 in colitis development and indicated preferential formation of the anti-inflammatory IL-35 rather than the pro-inflammatory IL-39 in wild-type animals. Additional therapeutic treatment of C57BL/6 mice after DSS administration confirmed the beneficial effect of SAHA on colitis manifestation reported in the literature. In contrast, HDACi in the Ebi3-deficient animals was not able to improve colitic parameters and even appeared to exacerbate the disease phenotype. Expression analyses of up- and downstream target genes provided further evidence that IL-35 rather than IL-39 is produced in the presence of Ebi3, consistent with the in vitro studies. Thus, comparison of the C57BL/6 mice with the Ebi3-deficient animals could provide insights into the mode of action of SAHA. Histone acetylating conditions ameliorate colitic symptoms via a mechanism involving epigenetic induction of Ebi3 followed by IL-35 formation. Based on the cooperation of epigenetic mechanisms and the drastic EBI3 induction shown by parallel hypomethylating and histone acetylating conditions, combined treatment with low-dose DNMTi and HDACi represents a therapeutic option for CU. In summary, the present work demonstrated epigenetic and NFκB-mediated reactivation of EBI3 via DNA demethylation and histone acetylation with subsequent IL-35 formation and secretion by in vitro and in vivo analyses. Since IL-35 is able to alleviate colitic symptoms, the epigenetic inducibility of EBI3 by DNMTi and HDACi represents a promising alternative for the currently used therapies in the treatment of CU, which are often not successful or only short-term effective. An excessive immune response during relapsing inflammatory phases could be counteracted and complications such as the formation of colitis-associated carcinomas prevented. KW - Epigenetik KW - Epstein-Barr Virus-induziertes Gen 3 KW - Colitis ulcerosa Y1 - 2022 ER - TY - THES A1 - Coleman Mac Gregor of Inneregny, Charles Dominic T1 - Rolle von mPGES1-abhängig gebildetem Prostaglandin E2 bei der Ausbildung von Insulinresistenz und nicht-alkoholischer Fettlebererkrankung durch die Modulation der Funktion von Lebermakrophagen N2 - Eine Störung des Leberstoffwechsels durch die Ausbildung einer Insulinresistenz kann zu Folgeerkrankungen wie der nicht alkoholischen Fettlebererkrankung (NAFLD) bis hin zur Steatohepatitis (NASH) und zur Entwicklung eines Diabetes Typ II führen. Am Krankheitsverlauf sind residente (Kupfferzellen) sowie infiltrierende Makrophagen beteiligt, die durch inflammatorische Stimuli aktiviert werden und zur Progression von Lebererkrankungen führen können. Im Rahmen dieser Arbeit wurde die Rolle von mPGES1-abhängig gebildetem Prostaglandin E2 (PGE2) an der Modulation von aktivierten Lebermakrophagen untersucht. Dazu wurden Kupfferzellen und Peritonealmakrophagen (als Modell für infiltrierende Makrophagen) aus Wildtyp und mPGES1-defizienten Mäusen isoliert. Beide Makrophagen­populationen wurden in Zellkulturversuchen mit Lipopolysacchariden (LPS) aktiviert und auf ihre PGE2-Synthese, Genexpression und Sekretion von verschiedenen Cytokinen hin untersucht. Die beiden Makrophagenpopulationen unterschieden sich hinsichtlich der PGE2-Synthese bei mPGSE1-Defizienz. Während bei Peritonealmakrophagen die LPS-abhängige PGE2-Synthese bei Abwesenheit der mPGES1 fast vollständig reprimiert war, war bei Kupfferzellen nur eine 25%ige Abnahme zu verzeichnen. Die postulierte selbstverstärkende Rückkopplungsschleife von PGE2 im Hinblick auf seine eigene Synthese konnte in isolierten Peritonealmakrophagen, nicht jedoch in Kupfferzellen, bestätigt werden. In Kupfferzellen führte exogenes PGE2 ferner zu einer Repression von den pro-inflammatorischen Cytokinen TNFα und IL-1β und für endogenes PGE2 konnte in diesem Zelltyp kein Effekt festgestellt werden. In Peritonealmakrophagen konnte hingegen auch für endogenes PGE2 eine reprimierende Wirkung auf die Expression von TNFα beobachtet werden. Das ist eventuell auf eine höhere Sensitivität gegenüber PGE2 von Peritonealmakrophagen im Vergleich zu Kupfferzellen zurückzuführen. PGE2 wirkte unter den gewählten Versuchsbedingungen in vitro somit eher anti-inflammatorisch. Cholesterolkristalle induzierten in Kupfferzellen die Expression der PGE2-synthetisierenden Enzyme und verschiedener pro-inflammatorische Cytokine. Sie könnten somit zu einer Progression von NAFL zu NASH beitragen. Die Daten aus dieser Arbeit deuten darauf hin, dass PGE2 im Rahmen von entzündlichen Leberveränderungen eine eher protektive Wirkung im Hinblick auf die Progression von NAFLD und Insulinresistenz haben könnte. KW - Insulinresistenz KW - Prostaglandin E2 KW - NAFLD KW - Kupfferzellen Y1 - ER - TY - THES A1 - Saussenthaler, Sophie T1 - The impact of DNA methylation on susceptibility to typ 2 diabetes in NZO mice N2 - The development of type 2 diabetes (T2D) is driven by genetic as well as life style factors. However, even genetically identical female NZO mice on a high-fat diet show a broad variation in T2D onset. The main objective of this study was to elucidate and investigate early epigenetic determinants of type 2 diabetes. Prior to other experiments, early fat content of the liver (<55.2 HU) in combination with blood glucose concentrations (>8.8 mM) were evaluated as best predictors of diabetes in NZO females. Then, DNA methylome and transcriptome were profiled to identify molecular pathophysiological changes in the liver before diabetes onset. The major finding of this thesis is that alterations in the hepatic DNA methylome precede diabetes onset. Of particular interest were 702 differentially methylated regions (DMRs), of which 506 DMRs had genic localization. These inter-individual DMRs were enriched by fivefold in the KEGG pathway type 2 diabetes mellitus, independent of the level of gene expression, demonstrating an epigenetic predisposition toward diabetes. Interestingly, among the list of hepatic DMRs, eleven DMRs were associated with known imprinted genes in the mouse genome. Thereby, six DMRs (Nap1l5, Mest, Plagl1, Gnas, Grb10 and Slc38a4) localized to imprinting control regions, including five iDMRs that exhibited hypermethylation in livers of diabetes-prone mice. This suggests that gain of DNA methylation in multiple loci of the paternal alleles has unfavourable metabolic consequences for the offspring. Further, the comparative liver transcriptome analysis demonstrated differences in expression levels of 1492 genes related to metabolically relevant pathways, such as citrate cycle and fatty acid metabolism. The integration of hepatic transcriptome and DNA methylome indicated that 449 differentially expressed genes were potentially regulated by DNA methylation, including genes implicated in insulin signaling. In addition, liver transcriptomic profiling of diabetes-resistant and diabetes-prone mice revealed a potential transcriptional dysregulation of 17 hepatokines, in particular Hamp. The hepatic expression of Hamp was decreased by 52% in diabetes-prone mice, on account of an increase in DNA methylation of promoter CpG-118. Hence, HAMP protein levels were lower in mice prone to develop diabetes, which correlated to higher liver triglyceride levels.. In sum, the identified DNA methylation changes appear to collectively favor the initiation and progression of diabetes in female NZO mice. In near future, epigenetic biomarkers are likely to contribute to improved diagnosis for T2D. KW - epigenetics KW - DNA methylation KW - RNAseq KW - fatty liver KW - type 2 diabetes KW - HAMP Y1 - 2021 ER - TY - THES A1 - Leer, Marina T1 - Computational analysis of the effects of ageing and diet on stem cell function and ectopic fat accumulation in the musculoskeletal system N2 - The musculoskeletal system provides support and enables movement to the body, and its deterioration is a crucial aspect of age-related functional decline. Mesenchymal stromal cells (MSCs) play an important role in musculoskeletal homeostasis due to their broad differentiation potentials and their ability to support osteogenic and myogenic tissue maintenance and regeneration. In the bone, MSCs differentiate either into osteochondrogenic progenitors to form osteocytes and chondrocytes, or increasingly with age into adipogenic progenitors which give rise to bone-resident adipocytes. In skeletal muscle, during healthy regeneration MSCs provide regulatory signals that activate local, tissue-specific stem cells, known as satellite cells, which regenerate contractile myofibres. This process involves a significant cross-talk to immune cells stemming from both lymphoid and myeloid lineages. During ageing, muscle-resident MSCs undergo increased adipogenic lineage commitment, causing niche changes that contribute to fatty infiltration in muscles. These shifts in cell populations in bone lead to the loss of osteogenic cells and subsequently osteoporosis, or in muscle to impaired regeneration and to the development of sarcopenia. However, the signals that drive transition of MSCs into their respective cellular fates remain elusive. This thesis aims to elucidate the transcriptional shifts modulating cell states and cell types in musculoskeletal MSC fate determination. Single-cell RNA-sequencing (scRNA-seq) was used to characterise cell type-specific transcript regulation. State-of-the-art bioinformatics tools were combined with different analytical platforms that include both droplet-based scRNA-seq for large heterogeneous populations, and microfluidics-based scRNA-seq to assess small, rare subpopulations. For each platform, distinct computational pipelines were established including filtering steps to exclude low-quality cells, and data visualisation was performed by dimensionality reduction. Downstream analysis included clustering, cell type annotation, and differential gene expression to investigate transcriptional states in defined cell types during ageing and injury in the muscle and bone. Finally, a novel tool to assess publication activities in defined areas of research for the identified marker genes was developed. The results in the bone indicate that ageing MSCs increasingly commit towards an adipogenic fate at the expense of osteogenic specialisation. The data also suggests that significant cell population shifts of MSC-type fibro-adipogenic progenitors during muscle ageing underlie the pathologies observed in homeostatic and post-injury regenerative conditions. High-throughput visualisation of publication activity for candidate genes enabled more effective biological evaluation of scRNA-seq data. These results expose critical age-related changes in the stem cell niches of skeletal muscle and bone, highlight their respective sensitivity to nutrition and pathology, and elucidate novel factors that modulate stem cell-based regeneration. Targeting these processes might improve musculoskeletal health in the context of ageing and prevent the negative effects of pathological lineage determination. N2 - Der Stütz- und Bewegungsapparat durchläuft eine altersbedingte gesundheitliche Verschlechterung, welche mit voranschreitendem Funktionsverlust einhergeht. Mesenchymale Stromazellen (MSCs) spielen aufgrund ihres breiten Differenzierungspotenzials und ihrer Fähigkeit, myogene bzw. osteogene Regenerationsprozesse zu unterstützen, eine wichtige Rolle in der muskuloskelettalen Homöostase. Im Knochen differenzieren MSCs entweder zu osteochondrogenen Vorläufern, um Knochen- bzw. Knorpelzellen zu bilden. Oder mit zunehmendem Alter werden vermehrt adipogene Vorläufer gebildet, aus denen Knochen-Fettzellen entstehen. Im Skelettmuskel sezernieren MSCs während der Muskelregeneration beispielsweise regulatorische Signale, die lokale, gewebespezifische Stammzellen, sogenannte Satellitenzellen, aktivieren, und diese daraufhin die kontraktilen Muskelfasern regenerieren. Dieser Prozess umfasst bedeutsame Wechselwirkung von Stammzellen mit Immunzellen sowohl der lymphoiden als auch aus myeloischen Abstammungslinien. Während des Alterns erhalten muskelresidente MSCs jedoch ein erhöhtes adipogenenes Potential, welches Nischenveränderung verursacht und damit zu einer Fettinfiltration in den Muskeln beitragen kann. Die Verschiebungen der Zellpopulationen verursachen einerseits den Verlust von osteogenen Vorläufern und fördern degenerative Prozesse im Knochengewebe, die Osteoporose zur Folge haben, oder beeinträchtigen die Regeneration im Muskel sowie dessen Funktionalität, und können damit zur altersbedingten Sarkopenie beitragen. MSCs durchlaufen einen Entscheidungsprozess um final zu differenzieren, der jedoch bislang nur unzureichend charakterisiert ist. Um diesen Aspekt zu beleuchten, untersucht diese Dissertation die diesem Prozess zugrundeliegende Veränderung der Transkriptionsprofile, welche die Zellzustände und Zelltypen bei der Differenzierung von muskuloskelettalen MSCs steuern. Einzelzell-RNA-Sequenzierung (scRNA-Seq) wurde verwendet, um die zelltyp-spezifische Transkriptionsregulation zu charakterisieren. Moderne bioinformatische Analyse-Tools und -Plattformen wurden kombiniert, die sowohl droplet-basierte (für große heterogene Populationen) als auch mikrofluidik-basierte scRNA-seq (für kleine, seltene Subpopulationen), umfassten. Es wurden plattform-spezifische Datenverarbeitungs-Pipelines generiert, einschließlich des Herausfilterns von Zellen geringer Qualität und Datenvisualisierung mit verschiedenen Dimensionsreduktions-Methoden. Die anschließende Analyse umfasste Clustering von Subpopulationen, Zelltyp-Annotation und differenzielle Genexpression, um die Transkriptionszustände in den definierten Zelltypen während des Alterns und bei Regeneration im Muskel und Knochen zu untersuchen. Abschließend wurde eine Software zur Bewertung der Publikationsaktivitäten in definierten Forschungsgebieten für die identifizierten Markergene entwickelt. Die Ergebnisse deuten im Knochen darauf hin, dass alternde MSCs auf Kosten der osteogenen Spezialisierung zunehmend adipogener werden. Weiterhin deuten unsere Daten darauf hin, dass im alternden Muskel eine signifikante Zellpopulationsanreicherung von MSCs zu fibro-adipogenen Vorläuferzellen stattfindet, welche den Pathologien in den Prozessen der Homöostase und Muskelregeneration nach Verletzung unterliegen. Die Visualisierung der Publikationsaktivität für Kandidatengene ermöglicht eine effektivere biologische Bewertung von scRNA-seq-Daten. Diese Ergebnisse offenbaren kritische altersbedingte Veränderungen innerhalb der Stammzellnischen von Skelettmuskeln und Knochen, und identifizieren neue Faktoren, die an stammzell-basierten Regeneration beteiligt sind. Diese Prozesse gezielt zu beeinflussen, könnte die muskuloskelettale Gesundheit im Alter verbessern und negative Effekte einer pathologischen Differenzierung verhindern. KW - single-cell RNA-sequencing KW - single-cell analysis KW - transcriptomics KW - mesenchymal stromal cells KW - musculoskeletal system KW - stem cell differentiation KW - mesenchymale stromale Zellen KW - Muskel-Skelett-System / Bewegungsapparat KW - Einzelzell-Sequenzierung KW - Einzelzell-Analyse KW - Stammzelldifferenzierung KW - Transkriptomik Y1 - 2023 ER - TY - THES A1 - Klauder, Julia T1 - Makrophagenaktivierung durch Hyperinsulinämie als Auslöser eines Teufelkreises der Entzündung im Kontext des metabolischen Syndroms T1 - Macrophage activation by hyperinsulinemia as a trigger of a vicious cycle of inflammation in the context of the metabolic syndrome N2 - Insulinresistenz ist ein zentraler Bestandteil des metabolischen Syndroms und trägt maßgeblich zur Ausbildung eines Typ-2-Diabetes bei. Eine mögliche Ursache für die Entstehung von Insulinresistenz ist eine chronische unterschwellige Entzündung, welche ihren Ursprung im Fettgewebe übergewichtiger Personen hat. Eingewanderte Makrophagen produzieren vermehrt pro-inflammatorische Mediatoren, wie Zytokine und Prostaglandine, wodurch die Konzentrationen dieser Substanzen sowohl lokal als auch systemisch erhöht sind. Darüber hinaus weisen übergewichtige Personen einen gestörten Fettsäuremetabolismus und eine erhöhte Darmpermeabilität auf. Ein gesteigerter Flux an freien Fettsäuren vom Fettgewebe in andere Organe führt zu einer lokalen Konzentrationssteigerung in diesen Organen. Eine erhöhte Darmpermeabilität erleichtert das Eindringen von Pathogenen und anderer körperfremder Substanzen in den Körper. Ziel dieser Arbeit war es, zu untersuchen, ob hohe Konzentrationen von Insulin, des bakteriellen Bestandteils Lipopolysaccharid (LPS) oder der freien Fettsäure Palmitat eine Entzündungsreaktion in Makrophagen auslösen oder verstärken können und ob diese Entzündungsantwort zur Ausbildung einer Insulinresistenz beitragen kann. Weiterhin sollte untersucht werden, ob Metabolite und Signalsubstanzen, deren Konzentrationen beim metabolischen Syndrom erhöht sind, die Produktion des Prostaglandins (PG) E2 begünstigen können und ob dieses wiederum die Entzündungsreaktion und seine eigene Produktion in Makrophagen regulieren kann. Um den Einfluss dieser Faktoren auf die Produktion pro-inflammatorischer Mediatoren in Makrophagen zu untersuchen, wurden Monozyten-artigen Zelllinien und primäre humane Monozyten, welche aus dem Blut gesunder Probanden isoliert wurden, in Makrophagen differenziert und mit Insulin, LPS, Palmitat und/ oder PGE2 inkubiert. Überdies wurden primäre Hepatozyten der Ratte isoliert und mit Überständen Insulin-stimulierter Makrophagen inkubiert, um zu untersuchen, ob die Entzündungsanwort in Makrophagen an der Ausbildung einer Insulinresistenz in Hepatozyten beteiligt ist. Insulin induzierte die Expression pro-inflammatorischer Zytokine in Makrophagen-artigen Zelllinien wahrscheinlich vorrangig über den Phosphoinositid-3-Kinase (PI3K)-Akt-Signalweg mit anschließender Aktiverung des Transkriptionsfaktors NF-κB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells). Die dabei ausgeschütteten Zytokine hemmten in primären Hepatozyten der Ratte die Insulin-induzierte Expression der Glukokinase durch Überstände Insulin-stimulierter Makrophagen. Auch LPS oder Palmitat, deren lokale Konzentrationen im Zuge des metabolischen Syndroms erhöht sind, waren in der Lage, die Expression pro-inflammatorischer Zytokine in Makrophagen-artigen Zelllinien zu stimulieren. Während LPS seine Wirkung, laut Literatur, unbestritten über eine Aktivierung des Toll-ähnlichen Rezeptors (toll-like receptor; TLR) 4 vermittelt, scheint Palmitat jedoch weitestgehend TLR4-unabhängig wirken zu können. Vielmehr schien die de novo-Ceramidsynthese eine entscheidene Rolle zu spielen. Darüber hinaus verstärkte Insulin sowohl die LPS- als auch die Palmitat-induzierte Ent-zündungsantwort in beiden Zelllinien. Die in Zelllinien gewonnenen Ergebnisse wurden größtenteils in primären humanen Makrophagen bestätigt. Desweiteren induzierten sowohl Insulin als auch LPS oder Palmitat die Produktion von PGE2 in den untersuchten Makrophagen. Die Daten legen nahe, dass dies auf eine gesteigerte Expression PGE2-synthetisierender Enzyme zurückzuführen ist. PGE2 wiederum hemmte auf der einen Seite die Stimulus-abhängige Expression des pro-inflammatorischen Zytokins Tumornekrosefaktor (TNF) α in U937-Makrophagen. Auf der anderen Seite verstärkte es jedoch die Expression der pro-inflammatorischen Zytokine Interleukin- (IL-) 1β und IL-8. Darüber hinaus verstärkte es die Expression von IL-6-Typ-Zytokinen, welche sowohl pro- als auch anti-inflammatorisch wirken können. Außerdem vestärkte PGE2 die Expression PGE2-synthetisierender Enzyme. Es scheint daher in der Lage zu sein, seine eigene Synthese zu verstärken. Zusammenfassend kann die Freisetzung pro-inflammatorischer Mediatoren aus Makro-phagen im Zuge einer Hyperinsulinämie die Entstehung einer Insulinresistenz begünstigen. Insulin ist daher in der Lage, einen Teufelskreis der immer stärker werdenden Insulin-resistenz in Gang zu setzen. Auch Metabolite und Signalsubstanzen, deren Konzentrationen beim metabolischen Syndrom erhöht sind (zum Beispiel LPS, freie Fettsäuren und PGE2), lösten Entzündungsantworten in Makrophagen aus. Das wechselseitige Zusammenspiel von Insulin und diesen Metaboliten und Signalsubstanzen löste eine stärkere Entzündungsantwort in Makrophagen aus als jeder der Einzelkomponenten. Die dadurch freigesetzten Zytokine könnten zur Manifestation einer Insulinresistenz und des metabolischen Syndroms beitragen. N2 - Insulin resistance is a central component of the metabolic syndrome and is a major contributor to the development of type 2 diabetes. One possible cause of insulin resistance is chronic low-grade inflammation, which originates in the adipose tissue of obese individuals. Immigrated macrophages produce increased levels of pro-inflammatory mediators such as cytokines and prostaglandins, resulting in increased concentrations of these substances both locally and systemically. In addition, obese individuals exhibit impaired fatty acid metabolism and increased intestinal permeability. Increased flux of free fatty acids from adipose tissue to other organs results in increased local concentrations in these organs. Increased intestinal permeability facilitates the entry of pathogens and other exogenous substances into the body. The aim of this work was to investigate whether high concentrations of insulin, the bacterial component lipopolysaccharide (LPS), or the free fatty acid palmitate can induce or enhance an inflammatory response in macrophages and whether this inflammatory response can contribute to the development of insulin resistance. Furthermore, to investigate whether metabolites and signaling substances whose concentrations are elevated in the metabolic syndrome can promote the production of prostaglandin (PG) E2 and whether this in turn can regulate the inflammatory response and its own production in macrophages. To investigate the influence of these factors on the production of pro-inflammatory mediators in macrophages, monocyte-like cell lines and primary human monocytes, that were isolated from the blood of healthy volunteers, were differentiated into macrophages and incubated for with insulin, LPS, palmitate and/ or PGE2. In addition, primary rat hepatocytes were isolated and incubated with supernatants of insulin-stimulated macrophages to investigate whether the inflammatory response in macrophages is involved in the development of insulin resistance in hepatocytes. Insulin induced the expression of pro-inflammatory cytokines in macrophage-like cell lines probably primarily via the phosphoinositide 3-kinase (PI3K)-Akt pathway with subsequent activation of the transcription factor NF-κB (nuclear factor 'kappa-light-chain-enhancer' of activated B-cells). The cytokines released in this process inhibited insulin-induced expression of glucokinase by supernatants of insulin-stimulated macrophages in primary rat hepatocytes. Also, LPS or palmitate, whose local concentrations are increased in the course of metabolic syndrome, were able to stimulate the expression of pro-inflammatory cytokines in macrophage-like cell lines. While LPS, according to the literature, undisputedly mediates its effect via activation of toll-like receptor (TLR) 4, palmitate, however, appears to be able to act mainly in a TLR4-independent manner. Rather, de novo ceramide synthesis appeared to play a crucial role. Moreover, insulin enhanced both LPS- and palmitate-induced inflammatory responses in both cell lines. The results obtained in macrophage-like cell lines were largely confirmed in primary human macrophages. Furthermore, both insulin and LPS or palmitate induced PGE2 production in the macrophages studied. The data suggest that this was not due to increased expression of arachidonic acid-synthesizing enzymes but rather to increased expression of PGE2-synthesizing enzymes. On the one hand PGE2 inhibited the stimulus-dependent expression of the pro-inflammatory cytokine tumor necrosis factor (TNF) α in U937 macrophages. However, on the other hand, it enhanced the expression of the pro-inflammatory cytokines interleukin- (IL-) 1β and IL-8. In addition, it enhanced the expression of IL-6-type cytokines, which can be both pro- and anti-inflammatory. In addition, PGE2 enhanced the expression of PGE2-synthesizing enzymes. It therefore appears to be able to enhance its own synthesis. In conclusion, the release of pro-inflammatory mediators from macrophages in the course of hyperinsulinemia may favor the development of insulin resistance. Thus, the hyperinsulinemia might be augmented in a vicious cycle feed forward loop. Metabolites and signaling substances whose concentrations are elevated in the metabolic syndrome (for example, LPS, free fatty acids, and PGE2) also triggered inflammatory responses in macrophages. The synergistic interaction of insulin and these metabolites and signaling substances triggered a stronger inflammatory response in macrophages than any of the individual components. The released cytokines could contribute to the manifestation of insulin resistance and the metabolic syndrome. KW - Metabolisches Syndrom KW - Entzündung KW - Makrophagen KW - Insulin KW - Zytokine KW - Typ-2-Diabetes KW - Prostaglandin KW - inflammation KW - insulin KW - macrophages KW - metabolic syndrom KW - prostaglandine KW - Type-2-diabetes KW - cytokines Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-520199 ER - TY - THES A1 - Schäfer, Marjänn Helena T1 - Untersuchungen zur Evolution der 15-Lipoxygenase (ALOX15) bei Säugetieren und funktionelle Charakterisierung von Knock-in-Mäusen mit humanisierter Reaktionsspezifität der 15-Lipoxygenase-2 (Alox15b) T1 - Studies on the evolution of 15-lipoxygenase (ALOX15) in mammals and functional characterization of Knock-in mice with humanized reaction specificity of 15-lipoxygenase-2 (Alox15b) N2 - Arachidonsäurelipoxygenasen (ALOX-Isoformen) sind Lipid-peroxidierenden Enzyme, die bei der Zelldifferenzierung und bei der Pathogenese verschiedener Erkrankungen bedeutsam sind. Im menschlichen Genom gibt es sechs funktionelle ALOX-Gene, die als Einzelkopiegene vorliegen. Für jedes humane ALOX-Gen gibt es ein orthologes Mausgen. Obwohl sich die sechs humanen ALOX-Isoformen strukturell sehr ähnlich sind, unterscheiden sich ihre funktionellen Eigenschaften deutlich voneinander. In der vorliegenden Arbeit wurden vier unterschiedliche Fragestellungen zum Vorkommen, zur biologischen Rolle und zur Evolutionsabhängigkeit der enzymatischen Eigenschaften von Säugetier-ALOX-Isoformen untersucht: 1) Spitzhörnchen (Tupaiidae) sind evolutionär näher mit dem Menschen verwandt als Nagetiere und wurden deshalb als Alternativmodelle für die Untersuchung menschlicher Erkrankungen vorgeschlagen. In dieser Arbeit wurde erstmals der Arachidonsäurestoffwechsel von Spitzhörnchen untersucht. Dabei wurde festgestellt, dass im Genom von Tupaia belangeri vier unterschiedliche ALOX15-Gene vorkommen und die Enzyme sich hinsichtlich ihrer katalytischen Eigenschaften ähneln. Diese genomische Vielfalt, die weder beim Menschen noch bei Mäusen vorhanden ist, erschwert die funktionellen Untersuchungen zur biologischen Rolle des ALOX15-Weges. Damit scheint Tupaia belangeri kein geeigneteres Tiermodel für die Untersuchung des ALOX15-Weges des Menschen zu sein. 2) Entsprechend der Evolutionshypothese können Säugetier-ALOX15-Orthologe in Arachidonsäure-12-lipoxygenierende- und Arachidonsäure-15-lipoxygenierende Enzyme eingeteilt werden. Dabei exprimieren Säugetierspezies, die einen höheren Evolutionsgrad als Gibbons aufweisen, Arachidonsäure-15-lipoxygenierende ALOX15-Orthologe, während evolutionär weniger weit entwickelte Säugetiere Arachidonsäure-12 lipoxygenierende Enzyme besitzen. In dieser Arbeit wurden elf neue ALOX15-Orthologe als rekombinante Proteine exprimiert und funktionell charakterisiert. Die erhaltenen Ergebnisse fügen sich widerspruchsfrei in die Evolutionshypothese ein und verbreitern deren experimentelle Basis. Die experimentellen Daten bestätigen auch das Triadenkonzept. 3) Da humane und murine ALOX15B-Orthologe unterschiedliche funktionelle Eigenschaften aufweisen, können Ergebnisse aus murinen Krankheitsmodellen zur biologischen Rolle der ALOX15B nicht direkt auf den Menschen übertragen werden. Um die ALOX15B-Orthologen von Maus und Mensch funktionell einander anzugleichen, wurden im Rahmen der vorliegenden Arbeit Knock-in Mäuse durch die In vivo Mutagenese mittels CRISPR/Cas9-Technik hergestellt. Diese exprimieren eine humanisierte Mutante (Doppelmutation von Tyrosin603Asparaginsäure+Histidin604Valin) der murinen Alox15b. Diese Mäuse waren lebens- und fortpflanzungsfähig, zeigten aber geschlechtsspezifische Unterschiede zu ausgekreuzten Wildtyp-Kontrolltieren im Rahmen ihre Individualentwicklung. 4) In vorhergehenden Untersuchungen zur Rolle der ALOX15B in Rahmen der Entzündungsreaktion wurde eine antiinflammatorische Wirkung des Enzyms postuliert. In der vorliegenden Arbeit wurde untersucht, ob eine Humanisierung der murinen Alox15b die Entzündungsreaktion in zwei verschiedenen murinen Entzündungsmodellen beeinflusst. Eine Humanisierung der murinen Alox15b führte zu einer verstärkten Ausbildung von Entzündungssymptomen im induzierten Dextran-Natrium-Sulfat-Kolitismodell. Im Gegensatz dazu bewirkte die Humanisierung der Alox15b eine Abschwächung der Entzündungssymptome im Freund‘schen Adjuvans Pfotenödemmodell. Diese Daten deuten darauf hin, dass sich die Rolle der ALOX15B in verschiedenen Entzündungsmodellen unterscheidet. N2 - Arachidonic acid lipoxygenases (ALOX-isoforms) are lipid peroxidizing enzymes that have been implicated in cell differentiation and in the pathogenesis of different diseases. In the human genome six different ALOX genes have been identified and all of them occur as single copy genes. For each human ALOX gene an ortholog exists in the mouse genome. Although human and mouse ALOX orthologs share a high degree of structural similarity ALOX15 and ALOX15B orthologs exhibit distinct functional characteristics. In the present study addressed four different questions on the occurrence, the biological role and enzyme evolution of mammalian ALOX15 and ALOX15B orthologs. 1) Tupaiidae are more closely related to humans than rodents and therefore these mammals have frequently been suggested as better animal models than mice for investigations into patho-physiological basis of human diseases. This work explored for the first time the arachidonic acid metabolism of a Tupaiidae representative (Tupaia belangeri) and found that this mammal carries four distinct ALOX15 genes in its genome. The enzymes encoded by these four genes share a high degree of functional similarity but the observed genomic multiplicity, which is neither present in mice nor in humans, makes studies into the biological role of ALOX15 orthologs more complex. Thus, Tupaia belangeri is not more suitable than mice for investigations into the biological role of mammalian ALOX15 orthologs since loss-of-function studies on one ALOX15 ortholog may easily be compensated by upregulation of an orthologous gene. 2) According to the Evolutionary Hypothesis mammalian ALOX15 orthologs can be subdivided into arachidonic acid 12-lipoxygenating and arachidonic acid 15-lipoxygenating enzymes. Mammalian species, which are ranked above gibbons express arachidonic acid 15 lipoxygenating ALOX15 orthologs. In contrast mammals ranked below gibbons express arachidonic acid 12-lipoxygenating enzymes. In this study the ALOX15 orthologs of eleven different mammals expressed as recombinant proteins and characterized their functional properties. The results of these experiments were consistent with the Evolutionary Hypothesis and put this theory on a broader experimental basis. Moreover, the obtained in vitro mutagenesis data indicate that the novel enzymes follow Triad Concept. 3) Since human and mouse ALOX15B orthologs exhibit different functional properties, conclusion drawn in mouse models of human diseases may be misleading. To make human and mouse ALOX15B orthologs more like each other were generated Alox15b knock-in mice, which express the humanized Tyr603Asp+His604Val double mutant of mouse Alox15b instead of the endogenous wildtype enzyme employing the CRISPR/Cas9 in vivo mutagenesis strategy. These Alox15b-KI mice are viable, reproduce normally but exhibit gender-specific differences to outbred wildtype control animals when the bodyweight kinetics during adolescence and early adulthood were followed. 4) In previous studies an anti-inflammatory role of ALOX15B in the pathogenesis of inflammation has been suggested. Here we explored whether functional humanization of mouse Alox15b impacts the severity of inflammatory symptoms in two mouse inflammation models. In the dextran-sodium sulfate colitis model humanization of mouse Alox15b induced more severe inflammatory symptoms. In contrast, humanization of this enzyme protected mice in the Freund’s complete adjuvants induced paw edema model. Taken together, these data suggest that the patho-physiological roles of Alox15b may vary depending on the type of the animal inflammation model used. KW - Lipoxygenase KW - ALOX15B KW - Knock in Mäuse KW - enzymatische Reaktionsspezifität KW - Tupaia belangeri KW - DSS-Colitis KW - Pfotenödem Mausmodell KW - mammalian ALOX15 orthologs Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-620340 ER -