TY - THES A1 - Paraskevopoulou, Sofia T1 - Adaptive genetic variation and responses to thermal stress in brachionid rotifers N2 - The importance of cryptic diversity in rotifers is well understood regarding its ecological consequences, but there remains an in depth comprehension of the underlying molecular mechanisms and forces driving speciation. Temperature has been found several times to affect species spatio-temporal distribution and organisms’ performance, but we lack information on the mechanisms that provide thermal tolerance to rotifers. High cryptic diversity was found recently in the freshwater rotifer “Brachionus calyciflorus”, showing that the complex comprises at least four species: B. calyciflorus sensu stricto (s.s.), B. fernandoi, B. dorcas, and B. elevatus. The temporal succession among species which have been observed in sympatry led to the idea that temperature might play a crucial role in species differentiation. The central aim of this study was to unravel differences in thermal tolerance between species of the former B. calyciflorus species complex by comparing phenotypic and gene expression responses. More specifically, I used the critical maximum temperature as a proxy for inter-species differences in heat-tolerance; this was modeled as a bi-dimensional phenotypic trait taking into consideration the intention and the duration of heat stress. Significant differences on heat-tolerance between species were detected, with B. calyciflorus s.s. being able to tolerate higher temperatures than B. fernandoi. Based on evidence of within species neutral genetic variation, I further examined adaptive genetic variability within two different mtDNA lineages of the heat tolerant B. calyciflorus s.s. to identify SNPs and genes under selection that might reflect their adaptive history. These analyses did not reveal adaptive genetic variation related to heat, however, they show putatively adaptive genetic variation which may reflect local adaptation. Functional enrichment of putatively positively selected genes revealed signals of adaptation in genes related to “lipid metabolism”, “xenobiotics biodegradation and metabolism” and “sensory system”, comprising candidate genes which can be utilized in studies on local adaptation. An absence of genetically-based differences in thermal adaptation between the two mtDNA lineages, together with our knowledge that B. calyciflorus s.s. can withstand a broad range of temperatures, led to the idea to further investigate shared transcriptomic responses to long-term exposure to high and low temperatures regimes. With this, I identified candidate genes that are involved in the response to temperature imposed stress. Lastly, I used comparative transcriptomics to examine responses to imposed heat-stress in heat-tolerant and heat-sensitive Brachionus species. I found considerably different patterns of gene expression in the two species. Most striking are patterns of expression regarding the heat shock proteins (hsps) between the two species. In the heat-tolerant, B. calyciflorus s.s., significant up-regulation of hsps at low temperatures was indicative of a stress response at the cooler end of the temperature regimes tested here. In contrast, in the heat-sensitive B. fernandoi, hsps generally exhibited up-regulation of these genes along with rising temperatures. Overall, identification of differences in expression of genes suggests suppression of protein biosynthesis to be a mechanism to increase thermal tolerance. Observed patterns in population growth are correlated with the hsp gene expression differences, indicating that this physiological stress response is indeed related to phenotypic life history performance. N2 - Obwohl die kryptische Diversität von Rotatorien (Rädertierchen) und die daraus resultierenden ökologischen Konsequenzen inzwischen sehr gut verstanden sind, sind die zugrunde liegenden molekularen Mechanismen und die Artbildungsprozesse bisher weitgehend unbekannt. Bekannt ist, dass die Temperatur eine bedeutende Rolle in den raum-zeitlichen Verbreitungsmustern der Arten sowie der Leistungsfähigkeit der Organismen, spielt. Es fehlen jedoch konkrete Informationen über die der Thermotoleranz zugrundeliegenden Mechanismen bei Rotatorien. Vor kurzem wurde hohe kryptische Diversität in der unter anderem in Süßwasser vorkommenden Art „Brachionus calyciflorus“ gefunden, so dass diese nun in mindestens vier Arten (B. calyciflorus sensu stricto (s.s.), B. fernandoi, B. dorcas und B. elevatus) unterteilt wurde. Beobachtungen von in Sympatrie vorkommenden Arten haben gezeigt, dass eine zeitliche Suksession innerhalb dieser Arten existiert, was vermuten lässt, dass Temperatur eine entscheidende Rolle bei der Artbildung gespielt haben könnte. Ziel dieser Arbeit ist es, Thermotoleranzunterschiede zwischen Arten des früheren B. calyciflorus-Artenkomplexes durch den Vergleich von phänotypischen und molekularen (Genexpression) Reaktionen auf Temperatur festzustellen. Die in dieser Untersuchung ermittelte kritische Maximaltemperatur wurde als Schätzer für zwischenartliche Hitzetoleranz verwendet. Mit Hilfe eines zweidimensionalen Verfahrens, welches sowohl die Dauer als auch die Stärke des Hitzestresses detektiert, konnte festgestellt werden, dass B. calyciflorus s.s. im Vergleich zu B. fernandoi hitzetoleranter ist. Auf Basis der innerartlichen genetischen Variation erfolgte eine tiefergehende Untersuchung zweier unterschiedlicher maternaler (mtDNA) Evolutionslinien der hitzetoleranteren Art B. calyciflorus s.s mit dem Ziel, unter divergenter Selektion stehende SNPs und Gene zu identifizieren, welche die Anpassung an verschiedene Temperaturen widerspiegeln könnten. Mit Hilfe dieses Experimentes war es möglich, potentiell positiv selektiere Kandidatengene zu identifizieren, welche im Zusammenhang mit dem „Lipidmetabolismus“, dem „Metabolismus und Abbau von Xenobiotika“ sowie dem „Sensorischen System“ stehen. Diese Kandidatengene lassen Rückschlüsse auf lokale Anpassungen zu. Es konnten keine genetischen Unterschiede gefunden werden, die im Zusammenhang mit der Temperaturanpassung der beiden untersuchten Evolutionslinien stehen. Um molekulare Grundlagen für die Toleranz von B. calyciflorus s.s für einen großen Temperaturbereich zu identifizieren, wurde das Transkriptom untersucht. Mit Hilfe der erhobenen Daten konnten Kandidatengene identifiziert werden, die für die Temperaturtoleranz von Bedeutung sind. Der letzte Teil dieser Arbeit konzentrierte sich auf die Untersuchung der Hitzestressantwort in einer hitzetoleranten und einer hitzesensitiven Brachionus Art. Diese Untersuchung konnte erhebliche Unterschiede in den Genexpre-ssionsmustern der beiden Arten aufzeigen. Die deutlichsten Unterschiede der Genexpression wurden hierbei in der Expression von Genen detektiert, die für die sogenannten Hitze-Schock-Proteinen (Heat-shock-proteins: hsp) codieren. In der hitzetoleranten Art B. calyciflorus s.s wurde ein signifikanter Anstieg der hsp-Genexpression bei geringen Temperaturen festgestellt, während bei der hitzesensitiven Art B. fernandoi ein signifikanter Anstieg bei hohen Temperaturen detektiert wurde. Die in dieser Arbeit gefundenen Unterschiede in der Genexpression zeigen, dass Temperaturstress eine Hemmung der Proteinbiosynthese bewirken kann, was zu einer erhöhten Thermotoleranz führt. Darüber hinaus ist Populationswachstum mit der Expression von Hitze-Schock-Proteingenen korreliert. Dies deutet darauf hin, dass die hier beschriebene physiologische Temperaturstressantwort tatsächlich mit den beobachteten phänotypischen Fitnessparametern im Zusammenhang steht. KW - Brachionus KW - zooplankton KW - temperature KW - RNA-seq KW - transcriptome KW - adaptation Y1 - 2019 ER - TY - THES A1 - Kiemel, Katrin T1 - Zooplankton adaptations and community dynamics in space and time N2 - In times of ongoing biodiversity loss, understanding how communities are structured and what mechanisms and local adaptations underlie the patterns we observe in nature is crucial for predicting how future ecological and anthropogenic changes might affect local and regional biodiversity. Aquatic zooplankton are a group of primary consumers that represent a critical link in the food chain, providing nutrients for the entire food web. Thus, understanding the adaptability and structure of zooplankton communities is essential. In this work, the genetic basis for the different temperature adaptations of two seasonally shifted (i.e., temperature-dependent) occurring freshwater rotifers of a formerly cryptic species complex (Brachionus calyciflorus) was investigated to understand the overall genetic diversity and evolutionary scenario for putative adaptations to different temperature regimes. Furthermore, this work aimed to clarify to what extent the different temperature adaptations may represent a niche partitioning process thus enabling co-existence. The findings were then embedded in a metacommunity context to understand how zooplankton communities assemble in a kettle hole metacommunity located in the northeastern German "Uckermark" and which underlying processes contribute to the biodiversity patterns we observe. Using a combined approach of newly generated mitochondrial resources (genomes/cds) and the analysis of a candidate gene (Heat Shock Protein 40kDa) for temperature adaptation, I showed that the global representatives of B. calyciflorus s.s.. are genetically more similar than B. fernandoi (average pairwise nucleotide diversity: 0.079 intraspecific vs. 0.257 interspecific) indicating that both species carry different standing genetic variation. In addition to differential expression in the thermotolerant B. calyciflorus s.s. and thermosensitive B. fernandoi, the HSP 40kDa also showed structural variation with eleven fixed and six positively selected sites, some of which are located in functional areas of the protein. The estimated divergence time of ~ 25-29 Myr combined with the fixed sites and a prevalence of ancestral amino acids in B. calyciflorus s.s. indicate that B. calyciflorus s.s. remained in the ancestral niche, while B. fernandoi partitioned into a new niche. The comparison of mitochondrial and nuclear markers (HPS 40kDa, ITS1, COI) revealed a hybridisation event between the two species. However, as hybridisation between the two species is rare, it can be concluded that the temporally isolated niches (i.e., seasonal-shifted occurrence) they inhabit based on their different temperature preferences most likely represent a pre-zygotic isolation mechanism that allows sympatric occurrence while maintaining species boundaries. To determine the processes underlying zooplankton community assembly, a zooplankton metacommunity comprising 24 kettle holes was sampled over a two-year period. Active (i.e., water samples) and dormant communities (i.e., dormant eggs hatched from sediment) were identified using a two-fragment DNA metabarcoding approach (COI and 18S). Species richness and diversity as well as community composition were analysed considering spatial, temporal and environmental parameters. The analysis revealed that environmental filtering based on parameters such as pH, size and location of the habitat patch (i.e., kettle hole) and surrounding field crops largely determined zooplankton community composition (explained variance: Bray-Curtis dissimilarities: 10.5%; Jaccard dissimilarities: 12.9%), indicating that adaptation to a particular habitat is a key feature of zooplankton species in this system. While the spatial configuration of the kettle holes played a minor role (explained variance: Bray-Curtis dissimilarities: 2.8% and Jaccard dissimilarities: 5.5%), the individual kettle hole sites had a significant influence on the community composition. This suggests monopolisation/priority effects (i.e., dormant communities) of certain species in individual kettle holes. As environmental filtering is the dominating process structuring zooplankton communities, this system could be significantly influenced by future land-use change, pollution and climate change. N2 - In Zeiten des fortschreitenden Verlusts biologischer Vielfalt ist es von entscheidender Bedeutung zu verstehen, wie natürliche Gemeinschaften strukturiert sind und welche Mechanismen und lokalen Anpassungen den beobachteten Biodiversitätsmustern zugrunde liegen, um eine wissenschaftliche Grundlage für die Vorhersage künftiger Veränderungen der lokalen und regionalen biologische Vielfalt zu schaffen. Aquatisches Zooplankton ist eine artenreiche Gruppe Primärkonsumenten, die ein entscheidendes Glied in der Nahrungskette darstellen, indem sie Nährstoffe für das gesamte Nahrungsnetz bereitstellen. Daher ist es von entscheidender Bedeutung, die Anpassungsfähigkeit und Struktur von Zooplanktongemeinschaften zu verstehen. In dieser Arbeit wurden die genetischen Grundlagen für die unterschiedliche Temperaturanpassung zweier saisonal-versetzt (d.h. temperaturabhängig) vorkommender limnischen Rädertierarten eines ehemals kryptischen Artenkomplexes (Brachionus calyciflorus) untersucht, um die genetische Variation und das evolutionäre Divergenz-Szenario sowie Grundlagen für die mutmaßliche Anpassungen an unterschiedliche Temperaturregime zu verstehen. Weiterhin sollte untersucht werden, ob die Temperaturanpassungen als Prozess der Nischenaufteilung verstanden werden können die die Koexistenz der Arten ermöglicht. Diese Ergebnisse wurden dann in einen Metagemeinschaftskontext eingebettet, um zu verstehen, wie sich Zooplanktongemeinschaften in einer Soll-Metagemeinschaft, welche sich in der nordostdeutschen Region "Uckermark" befindet, zusammensetzen und welche zugrundeliegenden Prozesse zu den beobachteten Biodiversitätsmustern führen. Eine Kombination aus neu generierten mitochondrialen Ressourcen (Genome/codierende Sequenzen) und der Analyse eines Kandidatengens (HSP 40kDa Gen) für die Temperaturanpassung ergab zum einen, dass die globalen Vertreter von B. calyciflorus s.s. einander genetisch ähnlicher sind als B. fernandoi (Nukleotiddiversität: 0,079 intraspezifisch vs. 0,257 interspezifisch) und beide Arten somit eine unterschiedliche genetische Variation besitzen. Zum anderen wird das HSP 40kDa wird nicht nur in dem wärmetoleranten B. calyciflorus s.s. und wärmeempfindlichen B. fernandoi unterschiedlich exprimiert, sondern weist auch strukturelle Variationen mit elf fixierten und sechs positiv selektierten Positionen auf, von denen einige in funktionellen Regionen des HSP 40kDa liegen. Die geschätzte Divergenzzeit von ca. 25-29 Millionen Jahren sowie die fixierten Positionen und die Dominanz anzestraler Aminosäuren in B. calyciflorus s.s. legen nahe, dass B. calyciflorus s.s. in der anzestralen Nische verblieb, während B. fernandoi eine neue Nische besetzte. Der Vergleich von mitochondrialen und nukleären Markern (HSP 40kDa, ITS1, COI) ergab ein Hybridisierungsereignis zwischen beiden Arten. Da Hybridisierung jedoch selten ist, können die zeitlich isolierten Nischen (d.h. saisonal-versetztes Auftreten), die sie aufgrund ihrer unterschiedlichen Temperaturpräferenzen bewohnen, als prä-zygotischer Isolationsmechanismus verstanden werden, der ein sympatrisches Vorkommen der Arten unter Aufrechterhaltung der Artgrenzen ermöglicht. Um die Prozesse zu bestimmen, die der Strukturierung von Zooplanktongemeinschaften zugrunde liegen, wurde über einen Zeitraum von zwei Jahren eine Zooplankton-Metagemeinschaft, bestehend aus 24 Söllen beprobt. Aktive (d.h. Wasserproben) und ruhende Gemeinschaften (d.h. aus dem Sediment geschlüpfte Gemeinschaften) wurden mit einem Zwei-Fragment-DNA-Metabarcoding-Ansatz (COI und 18S) bestimmt. Die Artenzahl und Abundanz sowie die Zusammensetzung der Gemeinschaften wurden unter Berücksichtigung räumlicher, zeitlicher und umweltbezogener Parameter analysiert. Die Analyse ergab, dass Umweltfilterung basierend auf Parametern wie pH-Wert, Größe, Lage und Typ des Habitats (d.h. des Solls) und der umgebenden Feldfrüchte die Zusammensetzung der Zooplanktongemeinschaft weitgehend bestimmt (erklärte Varianz: Bray-Curtis-Dissimilaritäten: 10,5%; Jaccard-Dissimilaritäten: 12,9%), was darauf hindeutet, dass die Anpassung an einen bestimmten Lebensraum ein wichtiges Merkmal der Zooplanktonarten in diesem System ist. Während die räumliche Struktur der Sölle eine geringe Rolle spielte (erklärte Varianz: Bray-Curtis-Dissimilaritäten: 2,8% und Jaccard-Dissimilaritäten: 5,5%), hatten die einzelnen Standorte einen erheblichen Einfluss auf die Zusammensetzung der Gemeinschaft. Dies deutet auf Monopolisierung/Prioritätseffekte (d.h. ruhende Gemeinschaften) bestimmter Arten in einzelnen Söllen hin. Da Umweltfilterung der dominierende Prozess für die Strukturierung der Zooplanktongemeinschaften ist, könnte dieses System durch künftige Landnutzungsänderungen, Verschmutzung und Klimawandel erheblich beeinflusst werden. KW - Zooplankton KW - Metacommunity KW - B. calyciflorus species complex KW - adaptation KW - hybridization KW - Metagemeinschaft KW - Anpassung KW - Hybridisierung Y1 - 2023 ER - TY - THES A1 - Colangeli, Pierluigi T1 - From pond metacommunities to life in a droplet BT - causes and consequences of movement in zooplankton Y1 - ER -