TY - THES A1 - Malchow, Anne-Kathleen T1 - Developing an integrated platform for predicting niche and range dynamics BT - inverse calibration of spatially-explicit eco-evolutionary models N2 - Species are adapted to the environment they live in. Today, most environments are subjected to rapid global changes induced by human activity, most prominently land cover and climate changes. Such transformations can cause adjustments or disruptions in various eco-evolutionary processes. The repercussions of this can appear at the population level as shifted ranges and altered abundance patterns. This is where global change effects on species are usually detected first. To understand how eco-evolutionary processes act and interact to generate patterns of range and abundance and how these processes themselves are influenced by environmental conditions, spatially-explicit models provide effective tools. They estimate a species’ niche as the set of environmental conditions in which it can persist. However, the currently most commonly used models rely on static correlative associations that are established between a set of spatial predictors and observed species distributions. For this, they assume stationary conditions and are therefore unsuitable in contexts of global change. Better equipped are process-based models that explicitly implement algorithmic representations of eco-evolutionary mechanisms and evaluate their joint dynamics. These models have long been regarded as difficult to parameterise, but an increased data availability and improved methods for data integration lessen this challenge. Hence, the goal of this thesis is to further develop process-based models, integrate them into a complete modelling workflow, and provide the tools and guidance for their successful application. With my thesis, I presented an integrated platform for spatially-explicit eco-evolutionary modelling and provided a workflow for their inverse calibration to observational data. In the first chapter, I introduced RangeShiftR, a software tool that implements an individual-based modelling platform for the statistical programming language R. Its open-source licensing, extensive help pages and available tutorials make it accessible to a wide audience. In the second chapter, I demonstrated a comprehensive workflow for the specification, calibration and validation of RangeShiftR by the example of the red kite in Switzerland. The integration of heterogeneous data sources, such as literature and monitoring data, allowed to successfully calibrate the model. It was then used to make validated, spatio-temporal predictions of future red kite abundance. The presented workflow can be adopted to any study species if data is available. In the third chapter, I extended RangeShiftR to directly link demographic processes to climatic predictors. This allowed me to explore the climate-change responses of eight Swiss breeding birds in more detail. Specifically, the model could identify the most influential climatic predictors, delineate areas of projected demographic suitability, and attribute current population trends to contemporary climate change. My work shows that the application of complex, process-based models in conservation-relevant contexts is feasible, utilising available tools and data. Such models can be successfully calibrated and outperform other currently used modelling approaches in terms of predictive accuracy. Their projections can be used to predict future abundances or to assess alternative conservation scenarios. They further improve our mechanistic understanding of niche and range dynamics under climate change. However, only fully mechanistic models, that include all relevant processes, allow to precisely disentangle the effects of single processes on observed abundances. In this respect, the RangeShiftR model still has potential for further extensions that implement missing influential processes, such as species interactions. Dynamic, process-based models are needed to adequately model a dynamic reality. My work contributes towards the advancement, integration and dissemination of such models. This will facilitate numeric, model-based approaches for species assessments, generate ecological insights and strengthen the reliability of predictions on large spatial scales under changing conditions. N2 - Arten sind an ihren jeweiligen Lebensraum angepasst, doch viele Lebensräume sind heute einem globalen Wandel unterworfen. Dieser äußert sich vor allem in Veränderungen von Landnutzung und Klima, welche durch menschliche Aktivitäten verursacht werden und ganze Ökosysteme in ihrem Gefüge stören können. Störungen der grundlegenden öko-evolutionären Prozesse können auf der Populationsebene in Form von veränderten Verbreitungsgebieten und Häufigkeitsmustern sichtbar werden. Hier werden die Auswirkungen des globalen Wandels auf eine Art oftmals zuerst beobachtet. Um zu untersuchen, wie die Wirkung und Wechselwirkung der verschiedenen öko-evolutionären Prozesse die beobachteten Verbreitungs- und Häufigkeitsmuster erzeugen, und wie diese Prozesse wiederum von Umweltbedingungen beeinflusst werden, stellen räumlich explizite Modelle wirksame Instrumente dar. Sie beschreiben die ökologische Nische einer Art, also die Gesamtheit aller Umweltbedingungen, unter denen die Art fortbestehen kann. Die derzeit am häufigsten verwendeten Modelle stützen sich auf statische, korrelative Zusammenhänge, die zwischen bestimmten räumlichen Prädiktoren und den beobachteten Artverteilungen hergestellt werden. Allerdings werden dabei stationäre Bedingungen angenommen, was sie im Kontext des globalen Wandels ungeeignet macht. Deutlich besser geeignet sind prozessbasierte Modelle, welche explizite, algorithmische Repräsentationen von ökologischen Prozessen beinhalten und deren gemeinsame Dynamik berechnen. Solche Modelle galten lange Zeit als schwierig zu parametrisieren, doch die zunehmende Verfügbarkeit von Beobachtungsdaten sowie die verbesserten Methoden zur Datenintegration machen ihre Verwendung zunehmend praktikabel. Das Ziel der vorliegenden Arbeit ist es, diese prozessbasierten Modelle weiterzuentwickeln, sie in umfassende Modellierungsabläufe einzubinden, sowie Software und Anleitungen für ihre erfolgreiche Anwendung verfügbar zu machen. In meiner Dissertation präsentiere ich eine integrierte Plattform für räumlich-explizite, öko-evolutionäre Modellierung und entwickle einen Arbeitsablauf für dessen inverse Kalibrierung an Beobachtungsdaten. Im ersten Kapitel stelle ich RangeShiftR vor: eine Software, die eine individuenbasierte Modellierungsplattform für die statistische Programmiersprache R implementiert. Durch die Open-Source-Lizenzierung, umfangreichen Hilfeseiten und online verfügbaren Tutorials ist RangeShiftR einem breiten Publikum zugänglich. Im zweiten Kapitel demonstriere ich einen vollständigen Modellierungsablauf am Beispiel des Rotmilans in der Schweiz, der die Spezifikation, Kalibrierung und Validierung von RangeShiftR umfasst.Durch die Integration heterogener Datenquellen, wie Literatur- und Monitoringdaten, konnte das Modell erfolgreich kalibriert werden. Damit konnten anschließend validierte, raum-zeitliche Vorhersagen über das Vorkommen des Rotmilans erstellt und die dafür relevanten Prozesse identifiziert werden. Der vorgestellte Arbeitsablauf kann auf andere Arten übertragen werden, sofern geeignete Daten verfügbar sind. Im dritten Kapitel habe ich RangeShiftR erweitert, sodass demografische Prozessraten direkt mit Klimavariablen verknüpft werden können. Dies ermöglichte es, die Reaktionen von acht Schweizer Brutvogelarten auf den Klimawandel genauer zu untersuchen. Insbesondere konnte das Modell die einflussreichsten klimatischen Faktoren identifizieren, demografisch geeignete Gebiete abgrenzen und aktuelle Populationstrends auf den bisherigen Klimawandel zurückführen. Meine Arbeit zeigt, dass die Anwendung komplexer, prozessbasierter Modelle in naturschutzrelevanten Kontexten mit verfügbaren Daten möglich ist. Solche Modelle können erfolgreich kalibriert werden und andere, derzeit verwendete Modellierungsansätze in Bezug auf ihre Vorhersagegenauigkeit übertreffen. Ihre Projektionen können zur Vorhersage zukünftiger Artvorkommen und zur Einschätzung alternativer Naturschutzmaßnahmen verwendet werden. Sie verbessern außerdem unser mechanistisches Verständnis von Nischen- und Verbreitungsdynamiken unter dem Einfluss des Klimawandels. Jedoch ermöglichen nur vollständig prozessbasierte Modelle, die alle relevanten Prozesse vereinen, eine korrekte Aufschlüsselung der Auswirkungen einzelner Prozesse auf die beobachteten Abundanzen. In dieser Hinsicht hat das RangeShiftR-Modell noch Potenzial für Weiterentwicklungen, um fehlende, einflussreiche Prozesse hinzuzufügen, wie zum Beispiel die Interaktionen zwischen Arten. Um eine dynamische Realität adäquat abbilden zu können, werden dynamische, prozessbasierte Modelle benötigt. Meine Arbeit leistet einen Beitrag zur Weiterentwicklung, Integration und Verbreitung solcher Modelle und stärkt somit die Anwendung numerischer, modellbasierter Methoden für die Bewertung des Zustands von Arten, die Untersuchung ökologischer Zusammenhänge und die Steigerung der Zuverlässigkeit von Vorhersagen auf großen räumlichen Skalen unter Umweltveränderungen. T2 - Entwicklung einer integrierten Modellierungs-Plattform zur Vorhersage von Nischen- und Verbreitungs-dynamiken: Inverse Kalibrierung räumlich-expliziter öko-evolutionärer Modelle KW - species distribution modelling KW - Bayesian inference KW - individual-based modelling KW - range shifts KW - ecological modelling KW - population dynamics KW - Bayes'sche Inferenz KW - ökologische Modellierung KW - individuen-basierte Modellierung KW - Populationsdynamik KW - Arealverschiebungen KW - Artverbreitungsmodelle Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-602737 ER - TY - THES A1 - Nguyen, Van Thanh T1 - Unravelling the mysteries of the Annamites BT - First insights in ecology, distribution, and genetic diversity of Annamite mammals N2 - The Annamites mountain range of Southeast Asia which runs along the border of Viet Nam and Laos is an important biodiversity hotspot with high levels of endemism. However, that biodiversity is threatened by unsustainable hunting, and many protected areas across the region have been emptied of their wildlife. To better protect the unique species in the Annamites, it is crucial to have a better understanding of their ecology and distribution. Additionally, basic genetic information is needed to provide conservation stakeholders with essential information to facilitate conservation breeding and counteract the illegal wildlife trade. To date, this baseline information is lacking for many Annamites species. This thesis aims to assess the effectiveness of using non-invasive collection methods, i.e. camera-trap surveys and leech-derived wildlife host DNA, in order to improve and enhance our understanding of ecology, distribution, and genetic diversity of the Annamites terrestrial mammals. In chapter 1, we analysed data from a systematic landscape camera-trap survey using single-species occupancy models to assess the ecology and distribution of two little-known Annamite endemics, the Annamite dark muntjac (Muntiacus rooseveltorum / truongsonensis) and Annamite striped rabbit (Nesolagus timminsi), in multiple protected areas across the Annamites. This chapter provided the first in-depth information on their ecology, as well as distribution patterns at large spatial scales. Most notably, we found that the Annamite dark muntjac was predominantly found at higher elevations, while responses to elevation varied among study areas for the Annamite striped rabbit. We estimated occupancy probabilities for both endemics by using their responses to environmental and anthropogenic influences and used this information to make recommendations for targeted conservation actions. We discuss how the approach we used for these two Annamites endemics can be expanded for other little-known and threatened species in other tropical regions. As is the case with ecology and distribution, very little is known about the genetic diversity of the Annamite striped rabbit and other mammals of the Annamites. This poor understanding is mainly attributed to the lack of a comprehensive DNA sample collection that covers the species’ entire distribution range, which is believed to be a consequence of the low density of mammals or the remoteness of species’ habitat. In order to overcome the difficulties when trying to collect DNA samples from elusive mammals, we applied invertebrate-derived DNA (iDNA) sampling via hematophagous leeches to indirectly obtain genetic materials of their terrestrial host mammals. In chapter 2, leech-derived DNA was used to study the genetic diversity of the Annamite striped rabbit population. By analysing the DNA extracted from leech samples collected at multiple study areas of the central Annamites, we found a genetic variation with five haplotypes among nine obtained sequences. Despite this diversity, we found no clear phylogeographic pattern among the lagomorph’s populations in central Annamites. The findings have direct conservation implications for the species, as local stakeholders are currently establishing a conservation rescue and breeding facility for Annamite endemic species. Thus our results suggested that Annamite striped rabbits from multiple protected areas in central Annamites can be used as founders for the breeding program. In chapter 3, the genetic material of six mammals, which are frequently found in Indochina's illegal wildlife trade, was extracted from leeches collected at six study sites across the Anamites. Species-specific genetic markers were used to obtain DNA fragments that were analysed together with Genbank reference sequences from other parts of the species’ distribution range. Our results showed that invertebrate-derived DNA can be used to fill the sampling gaps and provide genetic reference data that is needed for conservation breeding programmes or to counteract the illegal wildlife trade. Overal, this dissertation provides the first insights in the ecology, distribution, and genetics of rare and threatened species of the Annamites by utilising camera traps and leech-derived DNA as two non-invasive collection methods. This information is essential for improving conservation efforts of local stakeholders and managers, especially for the Annamite endemics. Results in this dissertation also show the effectiveness of both non-invasive methods for studying terrestrial mammals at a landscape level. By expanding the application of these methods to other protected areas across the Annamites, we will further our understanding of ecology, distribution, and genetics of Annamite endemics. With such landscape-scale surveys, we are able to provide stakeholders with an overview of the current status of wildlife in the Annamites which supports efforts to protect these secretive species from illegal hunting and thus their extinction. KW - Annamites KW - threatened KW - animal KW - camera-trap KW - occupancy Y1 - 2022 ER -