TY - THES A1 - Flatken, Marion A. T1 - The early stages of halide perovskites thin film formation T1 - Die frühen Stadien der Bildung von Halogenid-Perowskit-Dünnschichten N2 - As climate change worsens, there is a growing urgency to promote renewable energies and improve their accessibility to society. Here, solar energy harvesting is of particular importance. Currently, metal halide perovskite (MHP) solar cells are indispensable in future solar energy generation research. MHPs are crystalline semiconductors increasingly relevant as low-cost, high-performance materials for optoelectronics. Their processing from solution at low temperature enables easy fabrication of thin film elements, encompassing solar cells and light-emitting diodes or photodetectors. Understanding the coordination chemistry of MHPs in their precursor solution would allow control over the thin film crystallization, the material properties and the final device performance. In this work, we elaborate on the key parameters to manipulate the precursor solution with the long-term objective of enabling systematic process control. We focus on the nanostructural characterization of the initial arrangements of MHPs in the precursor solutions. Small-angle scattering is particularly well suited for measuring nanoparticles in solution. This technique proved to be valuable for the direct analyzes of perovskite precursor solutions in standard processing concentrations without causing radiation damage. We gain insights into the chemical nature of widely used precursor structures such as methylammonium lead iodide (MAPbI3), presenting first insights into the complex arrangements and interaction within this precursor state. Furthermore, we transfer the preceding results to other more complex perovskite precursors. The influence of compositional engineering is investigated using the addition of alkali cations as an example. As a result, we propose a detailed working mechanism on how the alkali cations suppress the formation of intermediate phases and improve the quality of the crystalline thin film. In addition, we investigate the crystallization process of a tin-based perovskite composition (FASnI3) under the influence of fluoride chemistry. We prove that the frequently used additive, tin fluoride (SnF2), selectively binds undesired oxidized tin (Sn(IV)) in the precursor solution. This prevents its incorporation into the actual crystal structure and thus reduces the defect density of the material. Furthermore, SnF2 leads to a more homogeneous crystal growth process, which results in improved crystal quality of the thin film material. In total, this study provides a detailed characterization of the complex system of perovskite precursor chemistry. We thereby cover relevant parameters for future MHP solar cell process control, such as (I) the environmental impact based on concentration and temperature (II) the addition of counter ions to reduce the diffuse layer surrounding the precursor nanostructures and (III) the targeted use of additives to eliminate unwanted components selectively and to ensure a more homogeneous crystal growth. N2 - Getrieben durch den Klimawandel wächst die Dringlichkeit erneuerbare Energien zu fördern und ihre Zugänglichkeit für die Gesellschaft zu verbessern. Solarenergie ist in dieser Hinsicht von besonderer Bedeutung. Derzeit sind Metallhalogenid-Perowskit-Solarzellen ein unverzichtbarer Bestandteil der Forschung an zukünftig klimaneutraler Energiegewinnung. Metallhalogenid-Perowskite (MHP) sind kristalline Halbleiter, die als kostengünstige und leistungsstarke Materialien für die Optoelektronik zunehmend an Bedeutung gewinnen. Ihre Verarbeitung aus Flüssigkeit bei niedriger Temperatur ermöglicht eine effiziente Herstellung von Dünnschichtelementen, zu denen nicht nur Solarzellen, sondern auch Leuchtdioden oder Photodetektoren zählen. Das Verständnis der Koordinationschemie in den Vorläuferlösungen der MHPs würde es daher ermöglichen, die Kristallisation der Dünnschichten, ihre Materialeigenschaften und die finale Leistung der entsprechenden Bauelemente zu kontrollieren. In dieser Arbeit werden die wichtigsten Parameter zur systematischen Beeinflussung der Vorläuferlösung ausgearbeitet, mit dem langfristigen Ziel eine systematische Prozesskontrolle zu ermöglichen. Dabei liegt ein Schwerpunkt auf der Anwendung einer nanostrukturellen Technik zur Charakterisierung erster Anordnungen in der Perowskit-Vorläuferlösung. Die Kleinwinkelstreuung eignet sich besonders gut zur nanostrukturellen Charakterisierung von entsprechenden Teilchen bzw. Clustern in Lösung. Mit dieser Methodik können wir auf direktem Wege Perowskit-Vorläuferlösungen in üblichen Verarbeitungs-konzentrationen analysieren. Wir erhalten Einblicke in die chemische Beschaffenheit der Vorläuferstrukturen und untersuchen zudem verschiedene Perowskit-Zusammensetzungen. Strukturelle Erkenntnisse über die Vorstufe im allgemein bekanntestem MHP, Methylammoniumbleijodid (MAPbI3) werden präsentiert und im Folgenden auf komplexere Anwendungen übertragen. Weiterhin wird der Einfluss von Kompositionsvariation am Beispiel der Zugabe von Alkali-Kationen (K, Rb, Cs) untersucht. Es wird ein detaillierter Wirkmechanismus vorgestellt, der erklärt, wie Alkali-Kationen die Bildung von Zwischenphasen unterdrücken und zudem die Qualität der kristallinen Dünnschicht verbessern. Unter Berücksichtigung vorangehender Ergebnisse, thematisiert diese Arbeit zudem den Kristallisationsprozess einer zinnbasierten Perowskit-Zusammensetzung (FASnI3) unter dem Einfluss von Fluoridchemie. Das häufig zugesetzte Additiv, Zinnfluorid (SnF2), bindet selektiv unerwünschtes, oxidiertes Sn(IV) bereits in der Vorläuferlösung. Dieses verhindert dessen Einbau in die eigentliche Kristallstruktur und verringert so die Defektdichte des Materials. Darüber hinaus führt SnF2 zu einem homogeneren Kristallwachstumsprozess, was eine bessere Kristallqualität des Dünnschichtmaterials und somit final eine bessere Solarzellenleistung zur Folge hat. Insgesamt bietet diese Studie eine detaillierte Charakterisierung des komplexen Systems der Perowskit-Vorläuferchemie und liefert dabei notwendige Parameter, die für die zukünftige Prozesssteuerung von Relevanz sind. KW - perovskite solar cells KW - perovskite precursors KW - thin film crystallization KW - small-angle scattering KW - Perowskit Solarzellen KW - Perowskit Vorläuferstadien KW - Kristallisation von Dünnschichten KW - Kleinwinkelstreuung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-552599 ER - TY - THES A1 - Kim, Jiyong T1 - Synthesis of InP quantum dots and their applications N2 - Technologically important, environmentally friendly InP quantum dots (QDs) typically used as green and red emitters in display devices can achieve exceptional photoluminescence quantum yields (PL QYs) of near-unity (95-100%) when the-state-of-the-art core/shell heterostructure of the ZnSe inner/ZnS outer shell is elaborately applied. Nevertheless, it has only led to a few industrial applications as QD liquid crystal display (QD–LCD) which is applied to blue backlight units, even though QDs has a lot of possibilities that able to realize industrially feasible applications, such as QD light-emitting diodes (QD‒LEDs) and luminescence solar concentrator (LSC), due to their functionalizable characteristics. Before introducing the main research, the theoretical basis and fundamentals of QDs are described in detail on the basis of the quantum mechanics and experimental synthetic results, where a concept of QD and colloidal QD, a type-I core/shell structure, a transition metal doped semiconductor QDs, the surface chemistry of QD, and their applications (LSC, QD‒LEDs, and EHD jet printing) are sequentially elucidated for better understanding. This doctoral thesis mainly focused on the connectivity between QD materials and QD devices, based on the synthesis of InP QDs that are composed of inorganic core (core/shell heterostructure) and organic shell (surface ligands on the QD surface). In particular, as for the former one (core/shell heterostructure), the ZnCuInS mid-shell as an intermediate layer is newly introduced between a Cu-doped InP core and a ZnS shell for LSC devices. As for the latter one (surface ligands), the ligand effect by 1-octanethiol and chloride ion are investigated for the device stability in QD‒LEDs and the printability of electro-hydrodynamic (EHD) jet printing system, in which this research explores the behavior of surface ligands, based on proton transfer mechanism on the QD surface. Chapter 3 demonstrates the synthesis of strain-engineered highly emissive Cu:InP/Zn–Cu–In–S (ZCIS)/ZnS core/shell/shell heterostructure QDs via a one-pot approach. When this unconventional combination of a ZCIS/ZnS double shelling scheme is introduced to a series of Cu:InP cores with different sizes, the resulting Cu:InP/ZCIS/ZnS QDs with a tunable near-IR PL range of 694–850 nm yield the highest-ever PL QYs of 71.5–82.4%. These outcomes strongly point to the efficacy of the ZCIS interlayer, which makes the core/shell interfacial strain effectively alleviated, toward high emissivity. The presence of such an intermediate ZCIS layer is further examined by comparative size, structural, and compositional analyses. The end of this chapter briefly introduces the research related to the LSC devices, fabricated from Cu:InP/ZCIS/ZnS QDs, currently in progress. Chapter 4 mainly deals with ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS QDs in terms of incomplete surface passivation during synthesis. This chapter demonstrates the lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanthiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bound on the incomplete QD surface. The systematic chemical analyses, such as thermogravimetric analysis‒mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD‒LEDs). Chapter 5 shows the relation between material stability of QDs and device stability of QD‒LEDs through the investigation of surface chemistry and shell thickness. In typical III–V colloidal InP quantum dots (QDs), an inorganic ZnS outermost shell is used to provide stability when overcoated onto the InP core. However, this work presents a faster photo-degradation of InP/ZnSe/ZnS QDs with a thicker ZnS shell than that with a thin ZnS shell when 1-octanethiol was applied as a sulfur source to form ZnS outmost shell. Herein, 1-octanethiol induces the form of weakly-bound carboxylate ligand via proton transfer on the QD surface, resulting in a faster degradation at UV light even though a thicker ZnS shell was formed onto InP/ZnSe QDs. Detailed insight into surface chemistry was obtained from proton nuclear magnetic resonance spectroscopy and thermogravimetric analysis–mass spectrometry. However, the lifetimes of the electroluminescence devices fabricated from InP/ZnSe/ZnS QDs with a thick or a thin ZnS shell show surprisingly the opposite result to the material stability of QDs, where the QD light-emitting diodes (QD‒LEDs) with a thick ZnS shelled QDs maintained its luminance more stable than that with a thin ZnS shelled QDs. This study elucidates the degradation mechanism of the QDs and the QD light-emitting diodes based on the results and discuss why the material stability of QDs is different from the lifetime of QD‒LEDs. Chapter 6 suggests a method how to improve a printability of EHD jet printing when QD materials are applied to QD ink formulation, where this work introduces the application of GaP mid-shelled InP QDs as a role of surface charge in EHD jet printing technique. In general, GaP intermediate shell has been introduced in III–V colloidal InP quantum dots (QDs) to enhance their thermal stability and quantum efficiency in the case of type-I core/shell/shell heterostructure InP/GaP/ZnSeS QDs. Herein, these highly luminescent InP/GaP/ZnSeS QDs were synthesized and applied to EHD jet printing, by which this study demonstrates that unreacted Ga and Cl ions on the QD surface induce the operating voltage of cone jet and cone jet formation to be reduced and stabilized, respectively. This result indicates GaP intermediate shell not only improves PL QY and thermal stability of InP QDs but also adjusts the critical flow rate required for cone-jet formation. In other words, surface charges of quantum dots can have a significant role in forming cone apex in the EHD capillary nozzle. For an industrially convenient validation of surface charges on the QD surface, Zeta potential analyses of QD solutions as a simple method were performed, as well as inductively coupled plasma optical emission spectrometry (ICP-OES) for a composition of elements. Beyond the generation of highly emissive InP QDs with narrow FWHM, these studies talk about the connection between QD material and QD devices not only to make it a vital jumping-off point for industrially feasible applications but also to reveal from chemical and physical standpoints the origin that obstructs the improvement of device performance experimentally and theoretically. N2 - Umweltfreundliche InP Quantenpunkte (QDs) sind technologisch relevant und werden typischerweise als grüne und rote Emitter in Bildschirmen verwendet. Nach dem Stand der Technik kann eine sorgfältig hergestellte Kern-Schale-Heterostruktur (ZnSe innen/ZnS außen) zu außergewöhnlich hohen Photolumineszenz-Quantenausbeuten (PL-QYs) von nahezu Eins (95 - 100 %) führen. Dennoch gibt es bisher nur einige wenige industrielle Anwendungen wie QD-Flüssigkristall-Bildschirme (liquid crystal display, QD-LCD), in denen die Anregung durch eine blaue Hintergrundbeleuchtung realisiert wird. Dabei haben QDs aufgrund ihrer Modifizierbarkeit noch viele weitere industrielle Einsatzmöglichkeiten, beispielsweise QD basierte lichtemittierende Dioden (QD-LEDs) und lumineszierende Solarkollektoren (luminescence solar concentrator, LSC). Vor dem Hauptteil werden in den Kapiteln 1 und 2 die Grundlagen von QDs und die theoretischen Grundlagen basierend auf quantenmechanischer Beschreibung und experimentellen Ergebnissen eingeführt. Zum besseren Verständnis werden: das Konzept der QDs, kolloidale QDs, Kern-Schale-Strukturen vom Typ I, mit Übergangsmetallen dotierte Halbleiter-QDs, die Oberflächenchemie von QDs und ihre Anwendungen (LSC, QD-LEDs und electrohydrodynamic EHD-Jet-Printing), nacheinander eingeführt. Der Schwerpunkt dieser Doktorarbeit liegt hauptsächlich auf der Kombination von QD-Materialien und QD-Bauelementen, basierend auf der Synthese von InP QDs mit einem anorganischen Kern (Kern-Schale-Heterostruktur) und einer organischen Hülle (Oberflächenliganden auf der QD-Oberfläche). In die Kern-Schale-Heterostruktur wird eine ZnCuInS-Mittelschale als Zwischenschicht zwischen einem Cu-dotierten InP Kern und einer ZnS-Schale für LSC-Bauelemente neu eingeführt. Bei den Oberflächenliganden wird der Ligandeneffekt von 1-Oktanthiol und Chloridionen auf die Stabilität von QD-LEDs und die Druckbarkeit mit EHD-Jet-Printing hin untersucht. Dabei erhält der Protonentransfermechanismus auf der QD-Oberfläche ein besonderes Augenmerk. In Kapitel 3 wird die Eintopfsynthese von hocheffizient emittierenden QDs mit einer Cu:InP/Zn-Cu-In-S (ZCIS)/ZnS Kern/Schale/Schale-Heterostruktur beschrieben. Wenn diese neuartige Kombination einer ZCIS/ZnS-Doppelschalenstruktur mit eine Reihe von Cu:InP-Kerne mit unterschiedlichen Größen kombiniert wird, ergeben die daraus entstehenden Cu:InP/ZCIS/ZnS-QDs die bisher höchsten publizierten PL-QYs von 71,5 – 82,4 % im nahen IR-Bereich von 694 – 850 nm mit einstellbarer PL Wellenlänge. Diese Ergebnisse weisen auf die Wirksamkeit der ZCIS-Zwischenschicht hin, welche die Grenzflächenspannung zwischen Kern und Schale effektiv mildert und damit zu einem solch hohen Emissionsvermögen führt. Diese ZCIS-Zwischenschicht wird durch vergleichende Größen-, Struktur- und Zusammensetzungsanalysen weiter untersucht. Am Ende des Kapitels wird der aktuellen Stand der Forschung auf dem Gebiet der LSC-Bauelemente aus solchen Cu:InP/ZCIS/ZnS-QDs vorgestellt. Kapitel 4 befasst sich hauptsächlich mit dem Ligandeneffekt bei der Passivierung mit 1-Oktanthiol von InP/ZnSe/ZnS-QDs im Hinblick auf die unvollständige Oberflächenpassivierung während der Synthese. Es fehlen anionischen Carboxylat-Liganden auf der InP/ZnSe/ZnS-Oberfläche der QDs, an denen Zink Carboxylat Liganden durch Protonentransfer vom 1-Oktanthiol in Carbonsäure-Liganden umgewandelt werden könnten. Die so synthetisierten QDs haben zunächst eine unterkoordinierte Oberfläche mit Leerstellen, die durch Lösungsmittel-Liganden wie Ethanol oder Aceton passiviert werden. Wenn 1-Octanthiol an die QD-Oberfläche bindet bewirkt der Protonentransfer die Bindung von Carboxylat-Liganden (aus Zink-Carboxylat) an die Oberfläche, wobei Ethanol- oder Aceton-Liganden ausgetauscht werden. Systematische Analysen wie Thermogravimetrie (thermogravimetric analysis TGA), Massenspektrometrie (MS) und Protonen-Kernmagnetresonanz (proton nuclear magnetic resonance 1H-NMR) zeigen direkt den Zusammenhang zwischen Oberflächenliganden und QD-LEDs. Kapitel 5 zeigt den Zusammenhang zwischen der Materialstabilität von QDs und der Bauteilstabilität von QD-LEDs durch Untersuchung der Oberflächenchemie und der Schalendicke. In typischen kolloidalen III-V-InP-QDs wird eine anorganische ZnS-Außenhülle auf den InP Kern aufgetragen, um Stabilität zu gewährleisten. In dieser Arbeit wird jedoch eine schnellere Photodegradation von InP/ZnSe/ZnS-QDs mit einer dickeren statt einer dünneren ZnS-Schale gezeigt, wenn 1-Oktanthiol als Schwefelquelle zur Bildung der äußersten ZnS-Schale verwendet wurde. 1-Oktanthiol induziert die Bildung eines schwach gebundenen Carboxylatliganden durch Protonentransfer auf der QD-Oberfläche, was zu einem schnelleren Abbau unter UV-Licht trotz dickerer ZnS-Schale führt. Detailliertere Einblicke in die Oberflächenchemie werden durch 1H-NMR, TGA und MS gewonnen. Überraschenderweise zeigen jedoch die Lebensdauern der aus InP/ZnSe/ZnS-QDs mit dicken oder dünnen ZnS-Hüllen hergestellten EL-Bauelemente eine gegenteilige Stabilität: Die QD-LEDs mit QDs mit dicker ZnS-Hülle haben eine längere Lebensdauer, als jene mit dünner ZnS-Hülle. Es wird der Degradationsmechanismus der QDs und der QD-Leuchtdioden anhand der Ergebnisse erläutert und der Effekt auf die unterschiedlichen Lebensdauern von Material und Bauteil diskutiert. In Kapitel 6 wird eine Methode vorgeschlagen, wie die Druckbarkeit von QD-Tintenformulierungen beim EHD-Jet-Druck über die QD-Materialien verbessert werden kann. Dazu werden InP-QDs mit GaP-Zwischenschalen erweitert, um die Oberflächenladung zu beeinflussen. Darüber hinaus verbessern GaP-Zwischenschalen in III-V kolloidalen InP-QDs deren thermische Stabilität und PL-QY im Falle von Typ-I-Kern/Schale/Schale-Heterostrukturen (InP/GaP/ZnSeS-QDs). Diese stark lumineszierenden InP/GaP/ZnSeS-QDs wurden synthetisiert und für den EHD-Jet-Druck verwendet. Nicht umgesetzte Ga und Cl-Ionen auf der QD-Oberfläche reduzieren die benötigte Betriebsspannung zur Ausbildung eines Taylor-Kegels und eines stabilen Tinten-Jets. Dieses Ergebnis deutet darauf hin, dass die Oberflächenladungen der Quantenpunkte eine wichtige Rolle bei der Ausbildung des Taylor-Kegels spielen. Mittels Zeta-Potenzial-Messung von QD-Tinten wurde eine industriell erprobte und einfache Methode zur Untersuchung der Oberflächenladungen verwendet. Darüber hinaus wurde optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma (inductively coupled plasma-atomic emission spectroscopy ICP-OES) zur Bestimmung der Elementzusammensetzung durchgeführt. Diese Dissertation beschäftigt sich sowohl mit der Synthese von hocheffizienten InP QDs mit schmalbandiger Emission (full width at half maximum FWHM), als auch den Zusammenhängen zwischen QD-Material und QD-Bauelementen. Die Ergebnisse sind einerseits relevant für die breitere industrielle Anwendung dieser Materialien und andererseits für ein tieferes chemisch-physikalisches, theoretisches und experimentelles Verständnis der Prozesse, die zu langlebigen und stabilen Bauelementen führen. KW - colloidal quantum dot KW - Cu doped InP KW - surface chemistry KW - QD stability KW - QD device KW - kolloidaler Quantenpunkt KW - Cu-dotiertes InP KW - Oberflächenchemie KW - QD-Stabilität KW - QD-Gerät Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-585351 ER - TY - THES A1 - Ihlenburg, Ramona T1 - Sulfobetainhydrogele mit biomedizinischem Anwendungspotential und deren Netzwerkcharakterisierung im Gleichgewichtsquellzustand N2 - In dieser Dissertation konnten erfolgreich mechanisch stabile Hydrogele über eine freie radikalische Polymerisation (FRP) in Wasser synthetisiert werden. Dabei diente vor allem das Sulfobetain SPE als Monomer. Dieses wurde mit dem über eine nukleophile Substitution erster bzw. zweiter Ordnung hergestellten Vernetzer TMBEMPA/Br umgesetzt. Die entstandenen Netzwerke wurden im Gleichgewichtsquellzustand im Wesentlichen mittels Niederfeld-Kernresonanzspektroskopie, Röntgenkleinwinkelstreuung (SAXS), Rasterelektronenmikroskopie mit Tieftemperaturtechnik (Kryo-REM), dynamisch-mechanische Analyse (DMA), Rheologie, thermogravimetrische Analyse (TGA) und dynamische Differenzkalorimetrie (DSC) analysiert. Das hierarchisch aufgebaute Netzwerk wurde anschließend für die matrixgesteuerten Mineralisation von Calciumphosphat und –carbonat genutzt. Über das alternierende Eintauchverfahren (engl. „alternate soaking method“) und der Variation von Mineralisationsparametern, wie pH-Wert, Konzentration c und Temperatur T konnten dann verschiedene Modifikationen des Calciumphosphats generiert werden. Das entstandene Hybridmaterial wurde qualitativ mittels Röntgenpulverdiffraktometrie (XRD), abgeschwächte Totalreflexion–fouriertransformierte Infrarot Spektroskopie (ATR-FTIR), Raman-Spektroskopie, Rasterelektronenmikroskopie (REM) mit energiedispersiver Röntgenspektroskopie (EDXS) und optischer Mikroskopie (OM) als auch quantitative mittels Gravimetrie und TGA analysiert. Für die potentielle Verwendung in der Medizintechnik, z.B. als Implantatmaterial, ist die grundlegende Einschätzung der Wechselwirkung zwischen Hydrogel bzw. Hybridmaterial und verschiedener Zelltypen unerlässlich. Dazu wurden verschiedene Zelltypen, wie Einzeller, Bakterien und adulte Stammzellen verwendet. Die Wechselwirkung mit Peptidsequenzen von Phagen komplettiert das biologische Unterkapitel. Hydrogele sind mannigfaltig einsetzbar. Diese Arbeit fasst daher weitere Projektperspektiven, auch außerhalb des biomedizinischem Anwendungsspektrums, auf. So konnten erste Ansätze zur serienmäßige bzw. maßgeschneiderte Produktion über das „Inkjet“ Verfahren erreicht werden. Um dies ermöglichen zu können wurden erfolgreich weitere Synthesestrategien, wie die Photopolymerisation und die redoxinitiierte Polymerisation, ausgenutzt. Auch die Eignung als Filtermaterial oder Superabsorber wurde analysiert. N2 - In this current thesis, mechanically stable hydrogels were successfully synthesized via free radical polymerization (FRP) in water. In particular, the sulfobetaine SPE served as a monomer. This was reacted with the crosslinker TMBEMPA/Br prepared via first- and second-order nucleophilic substitution, respectively. The resulting networks were analyzed in the equilibrium swelling state mainly by low-field nuclear magnetic resonance spectroscopy, small-angle X-ray scattering (SAXS), scanning electron microscopy with cryogenic technique (cryo-REM), dynamic mechanical analysis (DMA), rheology, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The hierarchical network was then used for matrix-controlled mineralization of calcium phosphate and carbonate. Using the alternate soaking method and varying mineralization parameters such as pH, concentration c and temperature T, different modifications of calcium phosphate could be generated. The resulting hybrid material was analyzed qualitatively by X-ray powder diffraction (XRD), attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), Raman spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDXS) and optical microscopy (OM) as well as quantitatively by gravimetry and TGA. For the potential use in medical technology, e.g. as implant material, the basic assessment of the interaction between hydrogel or hybrid material and different cell types is essential. For this purpose, different cell types, such as amoeba, bacteria and adult stem cells, were used. The interaction with peptide sequences of phages completes the biological subchapter. Hydrogels can be used in many different ways. This thesis therefore includes further project perspectives, also outside the biomedical application spectrum. Thus, first approaches to serial or customized production via the "inkjet" process could be achieved. To make this possible, other synthesis strategies such as photopolymerization and redox-initiated polymerization were successfully exploited. The suitability as filter material or superabsorbent was also analyzed. KW - Hydrogel KW - Calciumphosphat KW - Mineralisation KW - hydrogel KW - calcium phosphate KW - mineralization Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-607093 ER - TY - THES A1 - Hildebrandt, Jana T1 - Studies on nanoplastics for the preparation of reference materials T1 - Untersuchungen an Nanoplastik für die Herstellung von Referenzmaterialien N2 - The present work focuses on the preparation and characterisation of various nanoplastic reference material candidates. Nanoplastics are plastic particles in a size range of 1 − 1000 nm. The term has emerged in recent years as a distinction from the larger microplastic (1 − 1000 μm). Since the properties of the two plastic particles differ significantly due to their size, it is important to have nanoplastic reference material. This was produced for the polymer types polypropylene (PP) and polyethylene (PE) as well as poly(lactic acid) (PLA). A top-down method was used to produce the nanoplastic for the polyolefins PP and PE (Section 3.1). The material was crushed in acetone using an Ultra-Turrax disperser and then transferred to water. This process produces reproducible results when repeated, making it suitable for the production of a reference material candidate. The resulting dispersions were investigated using dynamic and electrophoretic light scattering. The dispersion of PP particles gave a mean hydrodynamic diameter Dh = 180.5±5.8 nm with a PDI = 0.08±0.02 and a zeta potential ζ = −43.0 ± 2.0 mV. For the PE particles, a diameter Dh = 344.5 ± 34.6 nm, with a PDI = 0.39 ± 0.04 and a zeta potential of ζ = −40.0 ± 4.2 mV was measured. This means that both dispersions are nanoplastics, as the particles are < 1000 nm. Furthermore, the starting material of these polyolefin particles was mixed with a gold salt and thereby the nanoplastic production was repeated in order to obtain nanoplastic particles doped with gold, which should simplify the detection of the particles. In addition to the top-down approach, a bottom-up method was chosen for the PLA (Section 3.2). Here, the polymer was first dissolved in THF and stabilised with a surfactant. Then water was added and THF evaporated, leaving an aqueous PLA dispersion. This experiment was also investigated using dynamic light scattering and, when repeated, yielded reproducible results, i. e. an average hydrodynamic diameter of Dh = 89.2 ± 3.0 nm. Since the mass concentration of PLA in the dispersion is known due to the production method, a Python notebook was tested for these samples to calculate the number and mass concentration of nano(plastic) particles using the MALS results. Similar to the plastic produced in Section 3.1, gold was also incorporated into the particle, which was achieved by adding a dispersion of gold clusters with a diameter of D = 1.15 nm in an ionic liquid (IL) in the production process. Here, the preparation of the gold clusters in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]) represented the first use of an IL both as a reducing agent for gold and as a solvent for the gold clusters. Two volumes of gold cluster dispersion were added during the PLA particle synthesis. The addition of the gold clusters leads to much larger particles. The nanoPLA with 0.8% Au has a diameter of Dh = 198.0 ± 10.8 nm and the nanoPLA with 4.9% Au has a diameter of Dh = 259.1 ± 23.7 nm. First investigations by TEM imaging show that the nanoPLA particles form hollow spheres when gold clusters are added. However, the mechanism leading to these structures remains unclear. N2 - Die vorliegende Arbeit beschäftigt sich mit der Herstellung und Charakterisierung verschiedener Nanoplastikreferenzmaterialkandidaten. Um Nanoplastik handelt es sich bei Plastikpartikeln in einem Größenbereich von 1 − 1000 nm. Der Begriff hat sich in den letzten Jahren als Abgrenzung zu dem größeren Mikroplastik (1 − 1000 μm) herausgebildet. Da sich die Eigenschaften der beiden Plastikpartikel auf Grund ihrer Größe deutlich unterscheiden, ist es wichtig, Nanoplastikreferenzmaterial zur Verfügung zu stellen. Dieses wurde für die Polymertypen Polypropylen (PP) und Polyethylen (PE) sowie Polymilchsäure (PLA) hergestellt. Dabei wurde für die Polyolefine PP und PE eine top-down Methode für die Herstellung des Nanoplastiks angewandt (Abschnitt 3.1). Dazu wurde das Material mithilfe eines Ultra-Turrax Dispergiergeräts in Aceton zerkleinert und danach in Wasser überführt. Dieser Prozess führt bei Wiederholung zu ähnlichen Ergebnissen, was ihn passend für die Herstellung eines Referenzmaterialkandidaten macht. Die entstandenen Dispersionen wurden mit der dynamischen und elektrophoretischen Lichtstreuung untersucht. Die Dispersion von PP-Partikeln ergab einen mittleren hydrodynamischen Durchmesser Dh = 180.5 ± 5.8 nm mit einem PDI = 0.08 ± 0.02 und einem Zetapotential ζ = −43.0 ± 2.0 mV. Bei den PE-Partikeln wurde ein Durchmesser Dh = 344.5 ± 34.6 nm, mit einem PDI = 0.39 ± 0.04 und einem Zetapotential von ζ = −40.0 ± 4.2 mV gemessen. Damit handelt es sich bei beiden Dispersionen um Nanoplastik, da die Partikel < 1000 nm sind. Des Weiteren wurde das Ausgangsmaterial dieser Polyolefinpartikel mit einem Goldsalz versetzt und damit die Nanoplastikherstellung wiederholt, um mit Gold dotierte Nanoplastikpartikel zu erhalten, die die Detektion der Partikel vereinfachen sollen. Neben dem Top-down Ansatz wurde für das PLA eine Bottom-up Methode gewählt (Abschnitt 3.2). Hierbei wurde das Polymer in THF zunächst gelöst und mit einem Tensid stabilisiert. Dann wurde Wasser hinzugegeben und das THF verdampft, sodass eine wässrige PLADispersion übrig blieb. Auch dieses Experiment wurde mithilfe der dynamischen Lichtstreuung untersucht und führte bei Wiederholung zu reproduzierbaren Ergebnissen von einem mittleren hydrodynamischen Durchmesser von Dh = 89.2 ± 3.0 nm. Da durch die Herstellungsweise die Massenkonzentration von PLA in der Dispersion bekannt ist, wurde für diese Proben ein Python Notebook getestet, das die Zahlen- und Massenkonzentration von Nano(plastik)partikeln mithilfe der MALS-Ergebnisse errechnen soll. Ähnlich wie für das in Abschnitt 3.1 hergestellte Plastik wurde auch hier Gold in den Partikel eingearbeitet, was durch die Zugabe einer Dispersion von Goldclustern mit einem Durchmesser von D = 1.15 nm in einer ionischen Flüssigkeit (IL) im Herstellungsprozess gelang. Dabei stellte die Herstellung der Goldcluster in der ionischen Flüssigkeit 1-Ethyl-3-methylimidazolium-dicyanamid ([Emim][DCA]) die erstmalige Verwendung einer IL sowohl als Reduktionsmittel für Gold als auch als Lösungsmittel für die Goldcluster dar. Während der Synthese der PLA-Partikel wurden zwei unterschiedliche Volumina der Goldcluster-Dispersion hinzugefügt. Die Zugabe von Goldclustern führt zu wesentlich größeren Partikeln. Das nanoPLA mit 0.8% Au hat einen Durchmesser von Dh = 198.0 ± 10.8 nm und das nanoPLA mit 4.9% Au hat einen Durchmesser von Dh = 259.1 ± 23.7 nm. Dabei zeigen erste Untersuchungen mittels TEM-Bildgebung, dass die nanoPLA-Partikel Hohlkugeln bilden, wenn Goldcluster hinzugefügt werden. Jedoch ist der Mechanismus, der zu diesen Strukturen führt, noch unklar. KW - nanoplastic KW - Nanoplastik KW - Rerenzmaterial KW - reference material KW - polyolefin KW - Polyolefin KW - Polymilchsäure KW - Poly(lactic acid) Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-617102 ER - TY - THES A1 - Breternitz, Joachim T1 - Structural systematic investigations of photovoltaic absorber materials N2 - The direct conversion of light from the sun into usable forms of energy marks one of the central cornerstones of the change of our living from the use of fossil, non-renewable energy resources towards a more sustainable economy. Besides the necessary societal changes necessary, it is the understanding of the solids employed that is of particular importance for the success of this target. In this work, the principles and approaches of systematic-crystallographic characterisation and systematisation of solids is used and employed to allow a directed tuning of the materials properties. The thorough understanding of the solid-state forms hereby the basis, on which more applied approaches are founded. Two material systems, which are considered as promising solar absorber materials, are at the core of this work: halide perovskites and II-IV-N2 nitride materials. While the first is renowned for its high efficiencies and rapid development in the last years, the latter is putting an emphasis on true sustainability in that toxic and scarce elements are avoided. N2 - Die direkte Umwandlung der Energie der Sonne bildet einen zentralen Baustein im Umbau unserer Gesellschaft von der Nutzung fossiler, nicht nachhaltiger Energieträger zum Erreichen einer nachhaltigen Wirtschaft. Neben den gesellschaftlichen Veränderungen ist es insbesondere das Verständnis der genutzten Festkörper, das den Motor dieser Entwicklung bildet. In dieser Arbeit werden Prinzipien der systematisch-kristallographischen Untersuchung und Kategorisierung von Festkörpern genutzt, um die Eigenschaften der Materialien gezielt steuern zu können. Dabei bildet das Verständnis des kristallinen Zustands und seine Untersuchung die Basis, auf der angewandtere Forschungsansätze aufbauen. In dieser Arbeit werden vor allem zwei Materialsysteme betrachtet, die als Absorbermaterialien in Solarzellen in Betracht gezogen werden: Halid-Perowskite und II-IV-N2-Nitrid Materialien. Die ersteren zeichnen sich insbesondere durch ihre erstaunlich hohen Effizienzen und rapide Entwicklung in den letzten Jahren aus, während das letztere System in besonderer Weise auf Nachhaltigkeit optimiert ist, und giftige oder seltene Elemente zu vermeiden sucht. KW - Materials Chemistry KW - Crystallography KW - Photovoltaics Y1 - 2023 ER - TY - THES A1 - Lehmann, Frederike Felizia T1 - Solubility limits and phase stabilizing effects of mixed hybrid perovskites N2 - In recent years the development of renewable energy sources attracted much attention due to the increasing environmental pollution induced by burning fossil fuels. The growing public interest in reducing greenhouse gases and the use of pollution-free energies (bio-mass-, geothermal-, solar-, water- or wind energy) paved the way for scientific research in renewable energies. [1] Solar energy provides unlimited access and offers high applicational flexibility, which is needed for energy consumption in a modern society. The scientific interest in photovoltaics (PV) nowadays focuses on discovering new materials and improving materials properties, aiming for the production of highly efficient solar cells. Lately, a new type of absorber material based on the perovskite type structure reached power conversion efficiencies of more than 24%. [2] By varying the chemical composition the electronic properties as e.g. the band gap energy can be tuned to increase the absorption range of this absorber material. This makes them in particular attractive for use in tandem solar cells, where silicon and perovskite absorber layers are combined to absorb a large range of the vible light (28.0% efficiency). [2] However, perovskite based solar cells not only suffer from fast degradation when exposed to humidity, but also from the use of toxic elements (e.g. lead), which can result in long-term environmental damage. Therefore, the aim of this study was to determine the fundamental structural and optoelectronical properties of highly interesting hybrid perovskite materials, the MAPbX3 solid solution (MA=CH3NH3; X=I,Br,Cl) and the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution (FA=HC(NH2)2). The study was performed on powder samples by using X-ray diffraction, revealing the crystal structure and solubility behavior of all solid solutions. Moreover the temperature-dependent behavior was studied using in-situ high resolution synchrotron X-ray diffraction and combinatorial thermal analysis methods. The influence of compositional changes on the band gap energy variation were observed using spectroscopic methods as photoluminescence and diffuse reflectance spectroscopy. The obtained results have shown that for the MAPb(I1-xBrx)3 solid solution a large miscibility gap in the range of 0.29 ( ± 0.02) ≤ x ≤ 0.92 ( ± 0.02) is present. This miscibility gap limits the suitable compositional range for use in thin film solar cells of mixed halide compounds. From the temperature-dependent in-situ synchrotron X-ray diffraction studies the complete T-X-phase diagram was established. Studies on the MAPb(Cl1-xBrx)3 solid solution revealed that MAPb(Cl1-xBrx)3 forms a complete solid solution series. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution the aim was to study the formation of the d-modification in FAPbI3, which is undesired for solar cell application. This can be overcome by stabilizing the favored high temperature cubic a-modification at ambient conditions. By partial substituting the formamidinium molecule by methylammonium and cesium the stabilization of the cubic modification was successful. The solubility limit of FA1-xCsxPbI3 solid solution was determined to be x=0.1, while a full miscibility was observed for the FA1-xMAxPbI3 solid solution. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution a solubility limit of cesium was observed to be y=0.1. The optoelectronic properties were investigated, revealing a linear change of band gap energy with chemical composition. It is demonstrated that the stabilized triple cation compound with cubic perovskite-type crystal structure shows enhanced stability of approximately six months. Furthermore, a short insight into lead-free perovskite-type materials is given, using germanium as non-toxic alternative to lead. For germanium based perovskites a fast decomposition in air was observed, due to the preferred formation of GeI4 in oxygen atmosphere. In-situ low temperature synchrotron X-ray diffraction measurements revealed a yet unknown low temperature modification of MAGeI3. [1] WESSELAK, Viktor; SCHABBACH, Thomas; LINK, Thomas; FISCHER, Joachim: Handbuch Regenerative Energietechnik. Springer, 2017 [2] NREL: Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf. – 25.04.2019 Y1 - 2020 ER - TY - THES A1 - Wang, Li T1 - Reprogrammable, magnetically controlled polymer actuators T1 - Reprogrammierbar, magnetisch gesteuerte Polymeraktuatoren N2 - Polymeric materials, which can perform reversible shape changes after programming, in response to a thermal or electrical stimulation, can serve as (soft) actuating components in devices like artificial muscles, photonics, robotics or sensors. Such polymeric actuators can be realized with hydrogels, liquid crystalline elastomers, electro-active polymers or shape-memory polymers by controlling with stumuli such as heat, light, electrostatic or magnetic field. If the application conditions do not allow the direct heating or electric stimulation of these smart devices, noncontact triggering will be required. Remotely controlled actuation have been reported for liquid crystalline elastomer composites or shape-memory polymer network composites, when a persistent external stress is applied during inductive heating in an alternating magnetic field. However such composites cannot meet the demands of applications requiring remotely controlled free-standing motions of the actuating components. The current thesis investigates, whether a reprogrammable remotely controlled soft actuator can be realized by magneto-sensitive multiphase shape-memory copolymer network composites containing magnetite nanoparticles as magneto-sensitive multivalent netpoints. A central hypothesis was that a magnetically controlled two-way (reversible bidirectional) shape-memory effect in such nanocomposites can be achieved without application of external stress (freestanding), when the required orientation of the crystallizable actuation domains (ADs) can be ensured by an internal skeleton like structure formed by a second crystallizable phase determing the samples´s geometry, while magneto-sensitive iron oxide nanoparticles covalently integrated in the ADs allow remote temperature control. The polymer matrix of these composites should exhibit a phase-segregated morphology mainly composed of cyrstallizable ADs, whereby a second set of higher melting crystallites can take a skeleton like, geometry determining function (geometry determining domains, GDs) after programming of the composite and in this way the orientation of the ADs is established and maintained during actuation. The working principle for the reversible bidirectional movements in the multiphase shape-memory polymer network composite is related to a melting-induced contraction (MIC) during inductive heating and the crystallization induced elongation (CIE) of the oriented ADs during cooling. Finally, the amount of multivalent magnetosensitive netpoints in such a material should be as low as possible to ensure an adequate overall elasticity of the nanocomposite and at the same time a complete melting of both ADs and GDs via inductive heating, which is mandatory for enabling reprogrammability. At first, surface decorated iron oxide nanoparticles were synthesized and investigated. The coprecipitation method was applied to synthesize magnetic nanoparticles (mNPs) based on magnetite with size of 12±3 nm and in a next step a ring-opening polymerization (ROP) was utilized for covalent surface modification of such mNPs with oligo(ϵ-caprolactone) (OCL) or oligo(ω-pentadecalactone) (OPDL) via the “grafting from” approach. A successful coating of mNPs with OCL and OPDL was confirmed by differential scanning calorimetry (DSC) experiments showing melting peaks at 52±1 °C for mNP-OCL and 89±1 °C for mNP-OPDL. It was further explored whether two-layered surface decorated mNPs, can be prepared via a second surface-initiated ROP of mNP-OCL or mNP-OPDL with ω-pentadecalactone or ϵ-caprolactone. The observation of two distinct melting transitions in DSC experiments as well as the increase in molecular weight of the detached coatings determined by GPC and 1H-NMR indicated a successful synthesis of the twolayered nanoparticles mNP-OCL-OPDL and mNP-OPDL-OCL. In contrast TEM micrographs revealed a reduction of the thickness of the polymeric coating on the nanoparticles after the second ROP, indicating that the applied synthesis and purification required further optimization. For evaluating the impact of the dispersion of mNPs within a polymer matrix on the resulting inductive heating capability of composites, plain mNPs as well as OCL coated magnetite nanoparticles (mNP-OCLs) were physically incorporated into crosslinked poly(ε-caprolactone) (PCL) networks. Inductive heating experiments were performed with both networks cPCL/mNP and cPCL/mNP-OCL in an alternating magnetic field (AMF) with a magnetic field strength of H = 30 kA·m-1. Here a bulk temperature of Tbulk = 74±2 °C was achieved for cPCL/mNP-OCL, which was almost 20 °C higher than the melting transition of the PCL-based polymer matrix. In contrast, the composite with plain mNPs could only reach a Tbulk of 48±2 °C, which is not sufficient for a complete melting of all PCL crystallites as required for actuation. The inductive heating capability of a multiphase copolymer nanocomposite network (designed as soft actuators) containing surface decorated mNPs as covalent netpoints was investigated. Such composite was synthesized from star-shaped OCL and OPDL precursors, as well as mNP-OCLs via reaction with HDI. The weight ratio of OPDL and OCL in the starting reaction mixture was 15/85 (wt%/wt%) and the amount of iron oxide in the nanocomposite was 4 wt%. DSC experiments revealed two well separated melting and crystallization peaks confirming the required phase-segregated morphology in the nanocomposite NC-mNP-OCL. TEM images could illustrate a phase-segregated morphology of the polymer matrix on the microlevel with droplet shaped regions attributed to the OPDL domains dispersed in an OCL matrix. The TEM images could further demonstrate that the nanoparticulate netpoints in NC-mNP-OCL were almost homogeneously dispersed within the OCL domains. The tests of the inductive heating capability of the nanocomposites at a magnetic field strength of Hhigh = 11.2 kA·m-1 revealed a achievable plateau surface temperature of Tsurf = 57±1 °C for NC-mNP-OCL recorded by an infrared video camera. An effective heat generation constant (̅P) can be derived from a multi-scale model for the heat generation, which is proportional to the rate of heat generation per unit volume of the sample. NC-mNP-OCL with homogeneously dispersed mNP-OCLs exhibited a ̅P value of 1.04±0.01 K·s- 1 at Hhigh, while at Hreset = 30.0 kA·m-1 a Tsurf of 88±1 °C (where all OPDL related crystallite are molten) and a ̅P value of 1.93±0.02 K·s-1 was obtained indicating a high magnetic heating capability of the composite. The free-standing magnetically-controlled reversible shape-memory effect (mrSME) was explored with originally straight nanocomposite samples programmed by bending to an angle of 180°. By switching the magnetic field on and off the composite sample was allowed to repetitively heat to 60 °C and cool to the ambient temperature. A pronounced mrSME, characterized by changes in bending angle of Δϐrev = 20±3° could be obtained for a composite sample programmed by bending when a magnetic field strength of Hhigh = 11.2 kA·m-1 was applied in a multi-cyclic magnetic bending experiment with 600 heating-cooling cycles it could be shown that the actuation performance did not change with increasing number of test cycles, demonstrating the accuracy and reproducibility of this soft actuator. The degree of actuation as well as the kinetics of the shape changes during heating could be tuned by variation of the magnetic filed strength between Hlow and Hhigh or the magnetic field exposure time. When Hreset = 30.0 kA·m-1 was applied the programmed geometry was erased and the composite sample returned to it´s originally straight shape. The reprogrammability of the nanocomposite actuators was demonstrated by one and the same test specimen first exhibiting reversible angle changes when programmed by bending, secondly reprogrammed to a concertina, which expands upon inductive heating and contracts during cooling and finally reprogrammed to a clip like shape, which closes during cooling and opens when Hhigh was applied. In a next step the applicability of the presented remote controllable shape-memory polymer actuators was demonstrated by repetitive opening and closing of a multiring device prepared from NC-mNP-OCL, which repetitively opens and closes when a alternating magnetic field (Hhigh = 11.2 kA·m-1) was switched on and off. For investigation of the micro- and nanostructural changes related to the actuation of the developed nanocomposite, AFM and WAXS experiments were conducted with programmed nanocomposite samples under cyclic heating and cooling between 25 °C and 60 °C. In AFM experiments the change in the distance (D) between representative droplet-like structures related to the OPDL geometry determining domains was used to calculate the reversible change in D. Here Drev = 3.5±1% was found for NC-mNP-OCL which was in good agreement with the results of the magneto-mechanical actuation experiments. Finally, the analysis of azimuthal (radial) WAXS scattering profiles could support the oriented crystallization of the OCL actuation domains at 25 °C. In conclusion, the results of this work successfully demonstrated that shape-memory polymer nanocomposites, containing mNPs as magneto-sensitive multifunctional netpoints in a covalently crosslinked multiphase polymer matrix, exhibit magnetically (remotely) controlled actuations upon repetitive exposure to an alternating magnetic field. Furthermore, the (shape) memory of such a nanocomposite can be erased by exposing it to temperatures above the melting temperature of the geometry forming domains, which allows a reprogramming of the actuator. These findings would be relevant for designing novel reprogrammable remotely controllable soft polymeric actuators. N2 - Polymere Materialien, die nach ihrer Programmierung reversible Formänderungen infolge einer thermischen oder elektrischen Stimulation ausführen, können als Aktuatoren in künstlichen Muskeln, sowie Bauteilen in den Bereichen Photonik, Robotik oder Sensorik dienen. Derartige Aktuatormaterialien können mit Hydrogelen, flüssigkristallinen Elastomeren, elektroaktiven Polymeren oder Formgedächtnispolymeren realisiert werden. Wenn die Anwendungsbedingungen eine direkte Erwärmung oder elektrische Stimulation dieser intelligenten Bauteile nicht zulassen, ist eine kontaktlose Aktivierung erforderlich. Eine ferngesteuerte Aktivierung der Aktuatoren wurde für Komposite aus flüssigkristallinen Elastomeren oder Formgedächtnispolymernetzwerken beschrieben, wenn eine anhaltende externe Spannung während der induktiven Erwärmung in einem magnetischen Wechselfeld angewendet wird. Solche Verbundwerkstoffe können jedoch nicht den Anforderungen von Anwendungen entsprechen, die ferngesteuerte freistehende Bewegungen der Aktuatorkomponenten erfordern. Die vorliegende Arbeit untersucht, ob fernsteuerbare Aktuatoren, deren Geometrie umprogrammierbar ist, über magneto-sensitive Multiphasen-Formgedächtnis-Copolymernetzwerk-Komposite, die Eisenoxid-Nanopartikel als magneto-sensitive, multivalente Netzpunkte enthalten, hergestellt werden können. Eine zentrale Hypothese besteht darin, dass ein magnetisch ferngesteuerter (reversibler bidirektionaler) Formgedächtniseffekt bei derartigen Nanokompositen ohne das Anlegen einer äußeren Spannung/Kraft (freistehend) erreicht werden kann, wenn die erforderliche Orientierung der kristallisierbaren Aktuatordomänen (AD) durch eine innere skelettartige Struktur, die durch eine zweite kristallisierbare Phase ausgebildet wird und die Geometrie der Probe bestimmt, sichergestellt werden kann, während die kovalent integrierten, magneto-sensitiven Eisenoxid-Nanopartikel, die kovalent in die ADs integriert sind, als Sensoren für das kontaktlose Aufheizen im Magnetfeld fungieren. Die Polymermatrix dieser Komposite sollte eine phasen-segregierte Morphologie aufweisen, die überwiegend aus kyrstallierbaren AD besteht, wobei zusätzliche andere, höher schmelzende Kristallite nach der Programmierung der Komposite eine skelettartige, geometriebestimmende Gerüststruktur ausbilden (Geometrie bestimmende Domänen, GD), die auf diese Weise die Orientierung der AD während der Aktuation sicherstellen. Das Arbeitsprinzip für die reversiblen bidirektionalen Bewegungen im Multiphasen-Formgedächtnis-PolymerNetzwerk Komposit beruht auf einer schmelzinduzierte Kontraktion (MIC) der orientierten ADs während der induktiven Erwärmung und deren kristallisationsinduzierten Ausdehnung (CIE) während des Abkühlens. Schließlich sollte die Menge an mehrwertigen magneto-empfindlichen Netzpunkten in solch einem Material so gering wie möglich sein, um eine ausreichende Gesamtelastizität des Nanokomposits zu gewährleisten und gleichzeitig ein vollständiges Schmelzen von ADs und GDs durch induktive Erwärmung ermöglichen, die erforderlich ist für die Reprogrammierung des Aktuators.Zunächst wurden oberflächenmodifizierte Eisenoxid-Nanopartikel synthetisiert und untersucht. Das Co-Präzipitationsverfahren wurde angewandt, um mNP auf der Basis von Magnetit mit einer Größe von 12±3 nm zu synthetisieren. In einem nächsten Schritt wurde eine Ringöffnungspolymerisation (ROP) zur kovalenten Oberflächenmodifizierung solcher mNP mit oligo(ε-Caprolacton) (OCL) oder oligo(ω-Pentadecalacton) (OPDL) über den "grafted from" Ansatz durchgeführt. Eine erfolgreiche Beschichtung von mNP mit OCL und OPDL konnte anhand von zwei Schmelzpeaks bei 52±1 °C (mNP-OCL) und 89±1 °C für mNP-OPDL in DSCExperimenten bestätigt werden. Es wurde weiter untersucht, ob mit einer zweiten oberflächeninitiierten ROP aus mNP-OCL oder mNP-OPDL durch Umsetzung mit ω-Pentadecalacton oder ε-Caprolacton zweischichtig oberflächenmodifizierte mNPs hergestellt werden können. Die Beobachtung von zwei unterschiedlichen Schmelzübergängen in DSCAufheizkurven sowie die mittels Gelpermeationschromatographie und 1H-NMR bestimmte Molekulargewichtszunahme der abgelösten oligomeren Beschichtungen bestätigten eine erfolgreiche Synthese der zweischichtig modifizierten Nanopartikel (mNP-OCL-OPDL und mNPOPDL-OCL). Im Gegensatz dazu zeigten TEM-Aufnahmen eine Reduktion der Dicke der Polymerbeschichtung auf den Nanopartikeln nach der zweiten ROP. Dies deutet darauf hin, dass die angewandte Synthese und Aufreinigung eine weitere Optimierung bedarf. Zur Untersuchung des Einflusses der Verteilung der mNP in einer Polymermatrix auf das magnetische Aufheizverhalten der Komposite wurden sowohl mNP als auch OCL-beschichtete Magnetit-Nanopartikel (mNP-OCL) physikalisch in vernetzte Poly(ε-caprolacton) Netzwerke eingearbeitet. In einem magnetischen Wechselfeld (AMF) mit einer magnetischen Feldstärke von H = 30 kA·m-1 wurden induktive Aufheizexperimente mit beiden Kompositmaterialien cPCL/mNP und cPCL/mNP-OCL durchgeführt. Dabei wurde für cPCL/mNP-OCL eine Massetemperatur von Tbulk = 74±2 °C erreicht, die um fast 20 °C höher lag als der ix Schmelzübergang der PCL-basierten Polymermatrix. Im Gegensatz dazu konnte für das Komposit mit einfachen mNP nur eine Tbulk von 48±2 °C erreicht werden, was für ein vollständiges Schmelzen aller PCL-Kristallite nicht ausreichend ist, wie es für eine kontaklose Schaltung des Formgedächtniseffektes erforderlich wäre. Als nächstes wurden multiphasige Nanokompositnetzwerke hergestellt, die oberflächenmodifizierte mNP als kovalente Netzpunkte enthalten. Diese Komposite wurden aus sternförmigen OCL und OPDL Precursoren, mNP-OCL durch Reaktion mit HDI synthetisiert. Das Gewichtsverhältnis von OPDL und OCL in der Reaktionsmischung betrug 15/85, und die Menge an Eisenoxid in den Nanokompositen entsprach 4 wt%. DSC-Experimente zeigten je zwei gut getrennte Schmelz- und Kristallisationspeaks, die die erforderliche phasen-segregierte Morphologie in den Nanokompositen NC-mNP-OCL bestätigten. TEM-Aufnahmen zeigten ebenfalls eine phasen-separierte Morphologie der Polymermatrix auf der Mikroebene mit tröpfchenförmigen Bereichen, die den in der OCL-Matrix dispergierten OPDL-Domänen zugeordnet werden können. Die Untersuchungen zum induktiven Aufheizverhalten der Nanokomposite bei einer Magnetfeldstärke von Hhigh = 11.2 kA·m-1 ergaben eine Oberflächen-Plateautemperatur von Tsurf = 57±1 °C. Eine effektive Wärmeerzeugungskonstante ̅P kann aus einem kinetischen Monte Carlo-Modellansatz abgeleitet werden, diese ist proportional zur Rate der Wärmeerzeugung pro Volumeneinheit der Probe. Für das untersuchte Nanokomposit betrug ̅P = 1.04±0.01 K·s-1 bei Hhigh, wohingegen bei einer Magnetfeldstärke von Hreset = 30.0 kA·m-1 eine Oberflächentemperatur von Tsurf = 88±1 °C erreicht wurde, bei der alle OPDL Kristallite aufgeschmolzen sind und der ̅P-Wert 1.93±0.02 K·s-1 betrug, welches ein gutes magnetische Aufheizverhalten charakterisiert. Der freistehende magnetisch gesteuerte reversible Formgedächtniseffekt (mrSME) wurde mit Nanokompositstreifen untersucht, der durch Biegen auf einen Winkel von 180° programmiert wurden. Durch Anwendung eines Magnetfeldes von Hhigh = 11.2 kA·m-1 wurden die Komposite auf ca. 60 °C aufgeheizt (erforderlich für das vollständige Aufschmelzen von OCL-Kristallen), und durch Ausschalten des Magnetfeldes (H0 = 0 kA·m-1) auf Umgebungstemperatur abgekühlt. Ein ausgeprägter mrSME konnte für eine durch Biegen programmierten Probe beobachtetet werden, mit Änderungen im Biegewinkel von Δϐrev = 20±3°. In einem mehrzyklischen magnetischen Biegeversuch mit 600 Heiz/Kühlzyklen konnte gezeigt werden, dass sich die Aktuations-Performance mit zunehmender Anzahl an Prüfzyklen nicht verändert, was die Zuverlässigkeit dieses Soft-Aktuators dokumentiert. Der Grad der Auslenkung (Winkeländerung) während der Aktuation sowie die Kinetik der Formänderung während des Erhitzens können durch Variation der magnetischen Feldstärke zwischen Hlow = 10.0 kA·m-1 und Hhigh sowie Einwirkzeit des Magnetfelds eingestellt werden. Nach Anwendung von Hreset = 30.0 kA·m-1 wird die programmierte Geometrie gelöscht und die nimmt wieder ihre ursprünglich gerade Form ein. Die Reprogrammierbarkeit der Nanokomposit-Aktuatoren wurde am Beispiel ein und desselben Probekörpers demonstriert, der nach Programmierung durch Biegen zunächst eine reversible Winkeländerungen bei Aktivierung vollführt, anschließend zu einer Ziehharmonika umprogrammiert wurde, die sich bei induktiver Erwärmung zusammenzieht und bei Kühlung auf Raumtemperatur ausdehnt und abschließend zu einer clipartigen Form umprogrammiert wurde, welche sich bei induktiver Erwärmung im Magnetfeld schließt und beim Kühlen wieder öffnet. In einem nächsten Schritt wurde die grundsätzliche Anwendbarkeit der vorgestellten fernsteuerbaren Formgedächtnispolymer-Aktuatoren am Beispiel des wiederholten Öffnens und Schließens einer aus NC-mNP-OCL hergestellten Multiringvorrichtung demonstriert. Dieser Demonstrator öffnet und schließt sich, wenn ein Magnetfeld von (Hhigh = 11.2 kA·m-1) wiederholend ein- und ausgeschaltet wird. Zur Untersuchung der mikro- und nanostruturellen Veränderungen im Zusammenhang mit der Aktuation der entwickelten Nanokomposite wurden AFM- und WAXS-Experimente an programmierten Nanokompositproben unter zyklischen Erwärmen und Kühlen von 25 °C auf 60 °C durchgeführt. In AFM-Experimenten wurde die Änderung des Abstands (D) zwischen repräsentativen tröpfchenartigen OPDL-Strukturen (GD) verwendet, um die reversible Änderung in D zu berechnen. Hierbei wurde Drev = 3.5±1% für NC-mNP-OCL gefunden, die mit den Ergebnissen der magneto-mechanischen Experimente gut übereinstimmen. Schließlich konnte die Analyse der azimutalen (radialen) WAXS-Streuprofile die orientierte Kristallisation der OCLAktuatordomänen bei abkühlen von 60 °C auf 25 °C zeigen. Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass Formgedächtnispolymer-Nanokomposite, die mNP als magneto-sensitive multifunktionelle Netzpunkte in einer kovalent vernetzten Multiphasen-Polymermatrix enthalten, eine ferngesteuerte, freistehende Aktuation bei wiederholter Exposition in einem magnetischen Wechselfeld aufweisen. Ferner kann der Formspeicher der Nanokomposite gelöscht werden, indem diese Temperaturen oberhalb der Schmelztemperatur der geometriebestimmenden Domänen (OPDL) ausgesetzt werden, was eine Neuprogrammierung der Aktuatoren in beliebige andere Formen ermöglicht. Die Ergebnisse dieser Arbeit könnten für die Konstruktion neuartiger, umprogrammierbarer und fernsteuerbarer Polymer-Aktuatoren relevant sein. KW - materials science KW - actuator KW - magnetic nanoparticles KW - shape-memory polymer KW - nanocomposite KW - Aktuator KW - magnetische Nanopartikel KW - Formgedächtnispolymer KW - Nanokomposite Y1 - 2018 ER - TY - THES A1 - Baryzewska, Agata W. T1 - Reconfigurable Janus emulsions as signal transducers for biosensing applications Y1 - 2023 ER - TY - THES A1 - Naderi Mehr, Fatemeh T1 - Preparation and self-assembly behavior of anisotropic polymer patchy particles Y1 - 2019 ER - TY - THES A1 - Lepre, Enrico T1 - Nitrogen-doped carbonaceous materials for energy and catalysis N2 - Facing the environmental crisis, new technologies are needed to sustain our society. In this context, this thesis aims to describe the properties and applications of carbon-based sustainable materials. In particular, it reports the synthesis and characterization of a wide set of porous carbonaceous materials with high nitrogen content obtained from nucleobases. These materials are used as cathodes for Li-ion capacitors, and a major focus is put on the cathode preparation, highlighting the oxidation resistance of nucleobase-derived materials. Furthermore, their catalytic properties for acid/base and redox reactions are described, pointing to the role of nitrogen speciation on their surfaces. Finally, these materials are used as supports for highly dispersed nickel loading, activating the materials for carbon dioxide electroreduction. N2 - Angesichts der Umweltkrise werden neue Technologien benötigt, um unsere Gesellschaft zu erhalten. In diesem Zusammenhang zielt diese Arbeit darauf ab, die Eigenschaften und Anwendungen von nachhaltigen Materialien auf Kohlenstoffbasis zu untersuchen. Insbesondere wird über die Synthese und Charakterisierung eines breiten Spektrums poröser, kohlenstoffhaltiger Materialien berichtet, welche einen hohen Stickstoffgehalt, besitzen und aus Nukleobasen gewonnen werden. Diese Materialien werden als Kathoden für Li-Ionen-Kondensatoren verwendet, wobei der Schwerpunkt auf der Kathodenherstellung liegt und die Oxidationsbeständigkeit, der aus Nukleobasen gewonnenen Materialien, hervorgehoben wird. Darüber hinaus werden ihre katalytischen Eigenschaften für Säure/Base- und Redoxreaktionen beschrieben, wobei die Rolle der Speziierung des Stickstoffs auf ihren Oberflächen hervorgehoben wird. Schließlich werden diese Materialien als Träger für eine hochdisperse Beladung mit Nickel verwendet, wodurch die Materialien für die Kohlendioxid Elektroreduktion aktiviert werden. KW - heteroatom-doped carbons KW - heteroatom-dotierte Kohlenstoffe KW - porous materials KW - poröse Materialien KW - salt melt templating KW - Salzschmelze-Templating KW - heterogeneous catalysis KW - heterogene Katalyse KW - single-atom catalysis KW - Einzelatomkatalyse KW - Li-ion capacitor KW - Li-Ionen-Kondensator Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577390 ER -