TY - THES A1 - Zibulski, Romy T1 - Taxonomic composition and biochemical and isotopic characteristics of North-Siberian mosses and their application to the palaeoecological reconstruction of tundra polygon development Y1 - 2014 ER - TY - GEN A1 - Zibulski, Romy A1 - Wesener, Felix A1 - Wilkes, Heinz A1 - Plessen, Birgit A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - C / N ratio, stable isotope (δ 13 C, δ 15 N), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5% (median D 27.8 %). The delta N-15 values range between 6.6 and C 1.7%(median D 2.2 %). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 672 KW - atmospheric nitrogen deposition KW - Lena River delta KW - free amino-acids KW - ombrotrophic peat KW - carbon isotopes KW - aquatic macrophytes KW - methane oxidation KW - organic matter KW - soil-nitrogen KW - plants Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417104 SN - 1866-8372 IS - 672 ER - TY - JOUR A1 - Zibulski, Romy A1 - Wesener, Felix A1 - Wilkes, Heinz A1 - Plessen, Birgit A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - C / N ratio, stable isotope (delta C-13, delta N-15), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic JF - Biogeosciences N2 - Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5% (median D 27.8 %). The delta N-15 values range between 6.6 and C 1.7%(median D 2.2 %). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat. Y1 - 2017 U6 - https://doi.org/10.5194/bg-14-1617-2017 SN - 1726-4170 SN - 1726-4189 VL - 14 SP - 1617 EP - 1630 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wieczorek, Mareike A1 - Kruse, Stefan A1 - Epp, Laura Saskia A1 - Kolmogorov, Alexei A1 - Nikolaev, Anatoly N. A1 - Heinrich, Ingo A1 - Jeltsch, Florian A1 - Pestryakova, Luidmila Agafyevna A1 - Zibulski, Romy A1 - Herzschuh, Ulrike T1 - Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study JF - Ecology : a publication of the Ecological Society of America N2 - Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. KW - climate change KW - closed forest KW - dendroecology KW - forest change KW - latitude KW - recruitment KW - tundra KW - vegetation model Y1 - 2017 U6 - https://doi.org/10.1002/ecy.1887 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 2343 EP - 2355 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Zibulski, Romy A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna T1 - Vegetation patterns along micro-relief and vegetation type transects in polygonal landscapes of the Siberian Arctic JF - Journal of vegetation science N2 - QuestionHow important is the effect of micro-relief and vegetation type on the characteristics of vascular plants and bryophytes in low-centred polygons? LocationSiberian Arctic, Russia. MethodsEight low-centred polygons in northern Siberia were surveyed for vegetation along transects running from the rim to the pond via the rim-pond transition of each polygon and across a vegetation type gradient from open forest to tundra. ResultsThe cover of vascular plants and bryophytes displays no significant differences between the rim and rim-pond transition but is significantly lower in the pond section of the polygons. Alpha-diversity of vascular plants decreases strongly from rim to pond, whereas bryophyte diversity in pond plots is significantly distinct from the rim and the rim-pond transition. There is no clear trend in cover for either plant group along the vegetation type transect and only a weak trend in -diversity. However, both gradients are reflected in the compositional turnover. The applied indicator species analysis identified taxa characteristic of certain environmental conditions. Among others, we found vascular plants primarily characteristic of the rim and bryophyte taxa characteristic of each micro-relief level and vegetation type. ConclusionsThe observed gradual pattern in -diversity and composition of polygonal vegetation suggests that micro-relief is the main driver of changes in the vegetation composition, while vegetation type and the related forest cover change are of subordinate importance for polygonal vegetation patterns along the Siberian tree line. KW - Bryophytes KW - Indicator species KW - Low-centred polygon KW - NMDS KW - Russia KW - Tree line KW - Tundra KW - Vascular plants Y1 - 2016 U6 - https://doi.org/10.1111/jvs.12356 SN - 1100-9233 SN - 1654-1103 VL - 27 SP - 377 EP - 386 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zibulski, Romy A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Wolter, Juliane A1 - Mueller, S. A1 - Schilling, N. A1 - Wetterich, Sebastian A1 - Schirrmeister, Lutz A1 - Tian, Fang T1 - River flooding as a driver of polygon dynamics: modern vegetation data and a millennial peat record from the Anabar River lowlands (Arctic Siberia) JF - Biogeosciences N2 - The spatial and temporal variability of a low-centred polygon on the eastern floodplain area of the lower Anabar River (72.070 degrees N, 113.921 degrees E; northern Yakutia, Siberia) has been investigated using a multi-method approach. The present-day vegetation in each square metre was analysed, revealing a community of Larix, shrubby Betula, and Salix on the polygon rim, a dominance of Carex and Andromeda polifolia in the rim-to-pond transition zone, and a predominantly monospecific Scorpidium scorpioides coverage within the pond. The total organic carbon (TOC) content, TOC/TN (total nitrogen) ratio, grain size, vascular plant macrofossils, moss remains, diatoms, and pollen were analysed for two vertical sections and a sediment core from a transect across the polygon. Radiocarbon dating indicates that the formation of the polygon started at least 1500 yr ago; the general positions of the pond and rim have not changed since that time. Two types of pond vegetation were identified, indicating two contrasting development stages of the polygon. The first was a well-established moss association, dominated by submerged or floating Scorpidium scorpioides and/or Drepanocladus spp. and overgrown by epiphytic diatoms such as Tabellaria flocculosa and Eunotia taxa. This stage coincides temporally with a period in which the polygon was only drained by lateral subsurface water flow, as indicated by mixed grain sizes. A different moss association occurred during times of repeated river flooding (indicated by homogeneous medium-grained sand that probably accumulated during the annual spring snowmelt), characterized by an abundance of Meesia triquetra and a dominance of benthic diatoms (e. g. Navicula vulpina), indicative of a relatively high pH and a high tolerance of disturbance. A comparison of the local polygon vegetation (inferred from moss and macrofossil spectra) with the regional vegetation (inferred from pollen spectra) indicated that the moss association with Scorpidium scorpioides became established during relatively favourable climatic conditions, while the association dominated by Meesia triquetra occurred during periods of harsh climatic conditions. Our study revealed a strong riverine influence (in addition to climatic influences) on polygon development and the type of peat accumulated. Y1 - 2013 U6 - https://doi.org/10.5194/bg-10-5703-2013 SN - 1726-4170 VL - 10 IS - 8 SP - 5703 EP - 5728 PB - Copernicus CY - Göttingen ER -