TY - JOUR A1 - Duan, Hongbo A1 - Zhou, Sheng A1 - Jiang, Kejun A1 - Bertram, Christoph A1 - Harmsen, Mathijs A1 - Kriegler, Elmar A1 - van Vuuren, Detlef P. A1 - Wang, Shouyang A1 - Fujimori, Shinichiro A1 - Tavoni, Massimo A1 - Ming, Xi A1 - Keramidas, Kimon A1 - Iyer, Gokul A1 - Edmonds, James T1 - Assessing China’s efforts to pursue the 1.5°C warming limit JF - Science N2 - Given the increasing interest in keeping global warming below 1.5°C, a key question is what this would mean for China’s emission pathway, energy restructuring, and decarbonization. By conducting a multimodel study, we find that the 1.5°C-consistent goal would require China to reduce its carbon emissions and energy consumption by more than 90 and 39%, respectively, compared with the “no policy” case. Negative emission technologies play an important role in achieving near-zero emissions, with captured carbon accounting on average for 20% of the total reductions in 2050. Our multimodel comparisons reveal large differences in necessary emission reductions across sectors, whereas what is consistent is that the power sector is required to achieve full decarbonization by 2050. The cross-model averages indicate that China’s accumulated policy costs may amount to 2.8 to 5.7% of its gross domestic product by 2050, given the 1.5°C warming limit. Y1 - 2021 U6 - https://doi.org/10.1126/science.aba8767 SN - 1095-9203 SN - 0036-8075 VL - 372 IS - 6540 SP - 378 EP - 385 PB - American Association for the Advancement of Science CY - Washington, DC ER -