TY - JOUR A1 - Hilson, Pierre A1 - Allemeersch, Joke A1 - Altmann, Thomas A1 - Aubourg, Sebastien A1 - Avon, Alexandra A1 - Beynon, Jim A1 - Bhalerao, Rishikesh P. A1 - Bitton, Frederique A1 - Caboche, Michel A1 - Cannoot, Bernard A1 - Chardakov, Vasil A1 - Cognet-Holliger, Cecile A1 - Colot, Vincent A1 - Crowe, Mark A1 - Darimont, Caroline A1 - Durinck, Steffen A1 - Eickhoff, Holger A1 - deLongevialle, Andeol Falcon A1 - Farmer, Edward E. A1 - Grant, Murray A1 - Kuiper, Martin T. R. A1 - Lehrach, Hans A1 - Leon, Celine A1 - Leyva, Antonio A1 - Lundeberg, Joakim A1 - Lurin, Claire A1 - Moreau, Yves T1 - Versatile gene-specific sequence tags for arabidopsis functional genomics : transcript profiling and reserve genetics applications N2 - Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics Y1 - 2004 ER - TY - JOUR A1 - Nazir, Tatjana A. A1 - Hrycyk, Lianna A1 - Moreau, Quentin A1 - Frak, Victor A1 - Cheylus, Anne A1 - Ott, Laurent A1 - Lindemann, Oliver A1 - Fischer, Martin H. A1 - Paulignan, Yves A1 - Delevoye-Turrell, Yvonne T1 - A simple technique to study embodied language processes BT - the grip force sensor JF - Behavior research methods : a journal of the Psychonomic Society N2 - Research in cognitive neuroscience has shown that brain structures serving perceptual, emotional, and motor processes are also recruited during the understanding of language when it refers to emotion, perception, and action. However, the exact linguistic and extralinguistic conditions under which such language-induced activity in modality-specific cortex is triggered are not yet well understood. The purpose of this study is to introduce a simple experimental technique that allows for the online measure of language-induced activity in motor structures of the brain. This technique consists in the use of a grip force sensor that captures subtle grip force variations while participants listen to words and sentences. Since grip force reflects activity in motor brain structures, the continuous monitoring of force fluctuations provides a fine-grained estimation of motor activity across time. In other terms, this method allows for both localization of the source of language-induced activity to motor brain structures and high temporal resolution of the recorded data. To facilitate comparison of the data to be collected with this tool, we present two experiments that describe in detail the technical setup, the nature of the recorded data, and the analyses (including justification about the data filtering and artifact rejection) that we applied. We also discuss how the tool could be used in other domains of behavioral research. KW - Grip-force sensor KW - Embodiment KW - Language KW - Motor system Y1 - 2015 U6 - https://doi.org/10.3758/s13428-015-0696-7 SN - 1554-351X SN - 1554-3528 VL - 49 SP - 61 EP - 73 PB - Springer CY - New York ER -