TY - JOUR A1 - Gerbser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - Elementary sets for logic programs Y1 - 2006 SN - 978-1-57735-281-5 ER - TY - JOUR A1 - Gebser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - Head-elementary-set-free logic programs Y1 - 2007 SN - 978-3-540- 72199-4 ER - TY - JOUR A1 - Gebser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - On elementary loops of logic programs JF - Theory and practice of logic programming N2 - Using the notion of an elementary loop, Gebser and Schaub (2005. Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR'05), 53-65) refined the theorem on loop formulas attributable to Lin and Zhao (2004) by considering loop formulas of elementary loops only. In this paper, we reformulate the definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we also show that the corresponding problem is coNP-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs attributable to Ben-Eliyahu and Dechter (1994. Annals of Mathematics and Artificial Intelligence 12, 53-87). Like an Ha: program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body. KW - stable model semantics KW - loop formulas KW - unfounded sets Y1 - 2011 U6 - https://doi.org/10.1017/S1471068411000019 SN - 1471-0684 VL - 11 IS - 2 SP - 953 EP - 988 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Lierler, Yuliya T1 - Modular Answer Set Programming as a formal specification language JF - Theory and practice of logic programming N2 - In this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining aformal proofshowing that the answer sets of a given (non-ground) logic programPcorrectly correspond to the solutions to the problem encoded byP, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order)program modulesthat may incorporate local hidden atoms at different levels. Then,verifyingthe logic programPamounts to prove some kind of equivalence betweenPand its modular specification. KW - Answer Set Programming KW - formal specification KW - formal verification KW - modular logic programs Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000265 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 767 EP - 782 PB - Cambridge University Press CY - New York ER - TY - GEN A1 - Gebser, Martin A1 - Lee, Joohyung A1 - Lierler, Yuliya T1 - On elementary loops of logic programs T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Using the notion of an elementary loop, Gebser and Schaub (2005. Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05 ), 53–65) refined the theorem on loop formulas attributable to Lin and Zhao (2004) by considering loop formulas of elementary loops only. In this paper, we reformulate the definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we also show that the corresponding problem is coNP-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs attributable to Ben-Eliyahu and Dechter (1994. Annals of Mathematics and Artificial Intelligence 12, 53–87). Like an HCF program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 566 KW - stable model semantics KW - loop formulas KW - unfounded sets Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-413091 SN - 1866-8372 IS - 566 ER -