TY - JOUR A1 - Li, Huashu A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Cao, Xianyong A1 - Yu, Zhitong A1 - Wang, Yong T1 - Vegetation and climate changes since the middle MIS 3 inferred from a Wulagai Lake pollen record, Inner Mongolia, Northeastern China JF - Review of palaeobotany and palynology : an international journal N2 - The climate conditions during Marine Isotope Stage (MIS) 3 were similar to present-day conditions, but whether humidity then exceeded present levels is debated, and the driving mechanisms of palaeoclimate evolution since MIS 3 remain unclear. Here, we use pollen data from Wulagai Lake, Inner Mongolia, to reconstruct vegetation and climate changes since the middle MIS 3. The steppe biome is reconstructed as the first dominant biome and the desert biome as the second, and the results show that the vegetation was steppe over the last 43,800 years. Poaceae, Artemisia, Caryophyllaceae and Humulus were abundant from middle to late MIS 3, indicating humid climate conditions. As drought-tolerant species such as Hippophae, Nitraria and Chenopodiaceae spread during MIS 2, the climate became arid. The Holocene is characterized by the dominance of steppe with mixed coniferous-broadleaved forests in the Greater Hinggan Range, and the desert biome retains high affinity scores, indicating that the climate was semi-arid. The climate from middle to late MIS 3 was wetter than in the Holocene; this shift was related to changes in the Northern Hemisphere's solar insolation and ice volume. The humid conditions during MIS 3 were attributed to strong ice–albedo feedback, which led to evaporation that was less than the precipitation. The enhanced evaporation caused by increased solar insolation and decreased ice volume might have exceeded the precipitation during the Holocene and resulted in low effective humidity in the Wulagai Lake basin. KW - Pollen KW - Biome KW - Ice volume KW - Solar insolation Y1 - 2018 U6 - https://doi.org/10.1016/j.revpalbo.2018.12.006 SN - 0034-6667 SN - 1879-0615 VL - 262 SP - 44 EP - 51 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Liu, Xingqi A1 - Herzschuh, Ulrike A1 - Wang, Yongbo A1 - Kuhn, Gerhard A1 - Yu, Zhitong T1 - Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records JF - Geophysical research letters N2 - Late Holocene glacier variations in westernmost Tibetan Plateau were studied based on the analysis of grain size, magnetic susceptibility, and elements from an 8.3m long distal glaciolacustrine sediment core of Kalakuli Lake. Our results show that there are four glacier expansion episodes occurring in 4200-3700calibrated years (cal years) B.P., 2950-2300cal years B.P., 1700-1070cal years B.P., and 570-100cal years B.P. and four glacier retreat periods of 3700-2950cal years B.P., 2300-1700cal years B.P., 1070-570cal years B.P., and 50cal years B.P.-present. The four glacier expansion episodes are generally in agreement with the glacier activities indicted by the moraines at Muztagh Ata and Kongur Shan, as well as with the late Holocene ice-rafting events in the North Atlantic. Over the last 2000years, our reconstructed glacier variations are in temporal agreement with reconstructed temperature from China and the Northern Hemisphere, indicating that glacier variations at centennial time scales are very sensitive to temperature in western Tibetan Plateau. KW - glaciolacustrine sediment KW - westernmost Tibetan Plateau KW - glacier variation KW - Kalakuli Lake KW - late Holocene KW - temperature Y1 - 2014 U6 - https://doi.org/10.1002/2014GL060444 SN - 0094-8276 SN - 1944-8007 VL - 41 IS - 17 SP - 6265 EP - 6273 PB - American Geophysical Union CY - Washington ER -