TY - GEN A1 - Gorski, Mathias A1 - Jung, Bettina A1 - Li, Yong A1 - Matias-Garcia, Pamela R. A1 - Wuttke, Matthias A1 - Coassin, Stefan A1 - Thio, Chris H. L. A1 - Kleber, Marcus E. A1 - Winkler, Thomas W. A1 - Wanner, Veronika A1 - Chai, Jin-Fang A1 - Chu, Audrey Y. A1 - Cocca, Massimiliano A1 - Feitosa, Mary F. A1 - Ghasemi, Sahar A1 - Hoppmann, Anselm A1 - Horn, Katrin A1 - Li, Man A1 - Nutile, Teresa A1 - Scholz, Markus A1 - Sieber, Karsten B. A1 - Teumer, Alexander A1 - Tin, Adrienne A1 - Wang, Judy A1 - Tayo, Bamidele O. A1 - Ahluwalia, Tarunveer S. A1 - Almgren, Peter A1 - Bakker, Stephan J. L. A1 - Banas, Bernhard A1 - Bansal, Nisha A1 - Biggs, Mary L. A1 - Boerwinkle, Eric A1 - Böttinger, Erwin A1 - Brenner, Hermann A1 - Carroll, Robert J. A1 - Chalmers, John A1 - Chee, Miao-Li A1 - Chee, Miao-Ling A1 - Cheng, Ching-Yu A1 - Coresh, Josef A1 - de Borst, Martin H. A1 - Degenhardt, Frauke A1 - Eckardt, Kai-Uwe A1 - Endlich, Karlhans A1 - Franke, Andre A1 - Freitag-Wolf, Sandra A1 - Gampawar, Piyush A1 - Gansevoort, Ron T. A1 - Ghanbari, Mohsen A1 - Gieger, Christian A1 - Hamet, Pavel A1 - Ho, Kevin A1 - Hofer, Edith A1 - Holleczek, Bernd A1 - Foo, Valencia Hui Xian A1 - Hutri-Kahonen, Nina A1 - Hwang, Shih-Jen A1 - Ikram, M. Arfan A1 - Josyula, Navya Shilpa A1 - Kahonen, Mika A1 - Khor, Chiea-Chuen A1 - Koenig, Wolfgang A1 - Kramer, Holly A1 - Kraemer, Bernhard K. A1 - Kuehnel, Brigitte A1 - Lange, Leslie A. A1 - Lehtimaki, Terho A1 - Lieb, Wolfgang A1 - Loos, Ruth J. F. A1 - Lukas, Mary Ann A1 - Lyytikainen, Leo-Pekka A1 - Meisinger, Christa A1 - Meitinger, Thomas A1 - Melander, Olle A1 - Milaneschi, Yuri A1 - Mishra, Pashupati P. A1 - Mononen, Nina A1 - Mychaleckyj, Josyf C. A1 - Nadkarni, Girish N. A1 - Nauck, Matthias A1 - Nikus, Kjell A1 - Ning, Boting A1 - Nolte, Ilja M. A1 - O'Donoghue, Michelle L. A1 - Orho-Melander, Marju A1 - Pendergrass, Sarah A. A1 - Penninx, Brenda W. J. H. A1 - Preuss, Michael H. A1 - Psaty, Bruce M. A1 - Raffield, Laura M. A1 - Raitakari, Olli T. A1 - Rettig, Rainer A1 - Rheinberger, Myriam A1 - Rice, Kenneth M. A1 - Rosenkranz, Alexander R. A1 - Rossing, Peter A1 - Rotter, Jerome A1 - Sabanayagam, Charumathi A1 - Schmidt, Helena A1 - Schmidt, Reinhold A1 - Schoettker, Ben A1 - Schulz, Christina-Alexandra A1 - Sedaghat, Sanaz A1 - Shaffer, Christian M. A1 - Strauch, Konstantin A1 - Szymczak, Silke A1 - Taylor, Kent D. A1 - Tremblay, Johanne A1 - Chaker, Layal A1 - van der Harst, Pim A1 - van der Most, Peter J. A1 - Verweij, Niek A1 - Voelker, Uwe A1 - Waldenberger, Melanie A1 - Wallentin, Lars A1 - Waterworth, Dawn M. A1 - White, Harvey D. A1 - Wilson, James G. A1 - Wong, Tien-Yin A1 - Woodward, Mark A1 - Yang, Qiong A1 - Yasuda, Masayuki A1 - Yerges-Armstrong, Laura M. A1 - Zhang, Yan A1 - Snieder, Harold A1 - Wanner, Christoph A1 - Boger, Carsten A. A1 - Kottgen, Anna A1 - Kronenberg, Florian A1 - Pattaro, Cristian A1 - Heid, Iris M. T1 - Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 19 KW - acute kidney injury KW - end-stage kidney disease KW - genome-wide association KW - study KW - rapid eGFRcrea decline Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-565379 IS - 19 ER - TY - JOUR A1 - Gorski, Mathias A1 - Jung, Bettina A1 - Li, Yong A1 - Matias-Garcia, Pamela R. A1 - Wuttke, Matthias A1 - Coassin, Stefan A1 - Thio, Chris H. L. A1 - Kleber, Marcus E. A1 - Winkler, Thomas W. A1 - Wanner, Veronika A1 - Chai, Jin-Fang A1 - Chu, Audrey Y. A1 - Cocca, Massimiliano A1 - Feitosa, Mary F. A1 - Ghasemi, Sahar A1 - Hoppmann, Anselm A1 - Horn, Katrin A1 - Li, Man A1 - Nutile, Teresa A1 - Scholz, Markus A1 - Sieber, Karsten B. A1 - Teumer, Alexander A1 - Tin, Adrienne A1 - Wang, Judy A1 - Tayo, Bamidele O. A1 - Ahluwalia, Tarunveer S. A1 - Almgren, Peter A1 - Bakker, Stephan J. L. A1 - Banas, Bernhard A1 - Bansal, Nisha A1 - Biggs, Mary L. A1 - Boerwinkle, Eric A1 - Böttinger, Erwin A1 - Brenner, Hermann A1 - Carroll, Robert J. A1 - Chalmers, John A1 - Chee, Miao-Li A1 - Chee, Miao-Ling A1 - Cheng, Ching-Yu A1 - Coresh, Josef A1 - de Borst, Martin H. A1 - Degenhardt, Frauke A1 - Eckardt, Kai-Uwe A1 - Endlich, Karlhans A1 - Franke, Andre A1 - Freitag-Wolf, Sandra A1 - Gampawar, Piyush A1 - Gansevoort, Ron T. A1 - Ghanbari, Mohsen A1 - Gieger, Christian A1 - Hamet, Pavel A1 - Ho, Kevin A1 - Hofer, Edith A1 - Holleczek, Bernd A1 - Foo, Valencia Hui Xian A1 - Hutri-Kahonen, Nina A1 - Hwang, Shih-Jen A1 - Ikram, M. Arfan A1 - Josyula, Navya Shilpa A1 - Kahonen, Mika A1 - Khor, Chiea-Chuen A1 - Koenig, Wolfgang A1 - Kramer, Holly A1 - Kraemer, Bernhard K. A1 - Kuehnel, Brigitte A1 - Lange, Leslie A. A1 - Lehtimaki, Terho A1 - Lieb, Wolfgang A1 - Loos, Ruth J. F. A1 - Lukas, Mary Ann A1 - Lyytikainen, Leo-Pekka A1 - Meisinger, Christa A1 - Meitinger, Thomas A1 - Melander, Olle A1 - Milaneschi, Yuri A1 - Mishra, Pashupati P. A1 - Mononen, Nina A1 - Mychaleckyj, Josyf C. A1 - Nadkarni, Girish N. A1 - Nauck, Matthias A1 - Nikus, Kjell A1 - Ning, Boting A1 - Nolte, Ilja M. A1 - O'Donoghue, Michelle L. A1 - Orho-Melander, Marju A1 - Pendergrass, Sarah A. A1 - Penninx, Brenda W. J. H. A1 - Preuss, Michael H. A1 - Psaty, Bruce M. A1 - Raffield, Laura M. A1 - Raitakari, Olli T. A1 - Rettig, Rainer A1 - Rheinberger, Myriam A1 - Rice, Kenneth M. A1 - Rosenkranz, Alexander R. A1 - Rossing, Peter A1 - Rotter, Jerome A1 - Sabanayagam, Charumathi A1 - Schmidt, Helena A1 - Schmidt, Reinhold A1 - Schoettker, Ben A1 - Schulz, Christina-Alexandra A1 - Sedaghat, Sanaz A1 - Shaffer, Christian M. A1 - Strauch, Konstantin A1 - Szymczak, Silke A1 - Taylor, Kent D. A1 - Tremblay, Johanne A1 - Chaker, Layal A1 - van der Harst, Pim A1 - van der Most, Peter J. A1 - Verweij, Niek A1 - Voelker, Uwe A1 - Waldenberger, Melanie A1 - Wallentin, Lars A1 - Waterworth, Dawn M. A1 - White, Harvey D. A1 - Wilson, James G. A1 - Wong, Tien-Yin A1 - Woodward, Mark A1 - Yang, Qiong A1 - Yasuda, Masayuki A1 - Yerges-Armstrong, Laura M. A1 - Zhang, Yan A1 - Snieder, Harold A1 - Wanner, Christoph A1 - Boger, Carsten A. A1 - Kottgen, Anna A1 - Kronenberg, Florian A1 - Pattaro, Cristian A1 - Heid, Iris M. T1 - Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline JF - Kidney international : official journal of the International Society of Nephrology N2 - Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function. KW - acute kidney injury KW - end-stage kidney disease KW - genome-wide association KW - study KW - rapid eGFRcrea decline Y1 - 2020 U6 - https://doi.org/10.1016/j.kint.2020.09.030 SN - 0085-2538 SN - 1523-1755 VL - 99 IS - 4 SP - 926 EP - 939 PB - Elsevier CY - New York ER - TY - JOUR A1 - Zhou, Suqiong A1 - Pan, Yuanwei A1 - Zhang, Jianguang A1 - Li, Yan A1 - Neumann, Falko A1 - Schwerdtle, Tanja A1 - Li, Wenzhong A1 - Haag, Rainer T1 - Dendritic polyglycerol-conjugated gold nanostars with different densities of functional groups to regulate osteogenesis in human mesenchymal stem cells JF - Nanoscale N2 - Nanomaterials play an important role in mimicking the biochemical and biophysical cues of the extracellular matrix in human mesenchymal stem cells (MSCs). Increasing studies have demonstrated the crucial impact of functional groups on MSCs, while limited research is available on how the functional group's density on nanoparticles regulates MSC behavior. Herein, the effects of dendritic polyglycerol (dPG)-conjugated gold nanostars (GNSs) with different densities of functional groups on the osteogenesis of MSCs are systematically investigated. dPG@GNS nanocomposites have good biocompatibility and the uptake by MSCs is in a functional group density-dependent manner. The osteogenic differentiation of MSCs is promoted by all dPG@GNS nanocomposites, in terms of alkaline phosphatase activity, calcium deposition, and expression of osteogenic protein and genes. Interestingly, the dPGOH@GNSs exhibit a slight upregulation in the expression of osteogenic markers, while the different charged densities of sulfate and amino groups show more efficacy in the promotion of osteogenesis. Meanwhile, the sulfated nanostars dPGS20@GNSs show the highest enhancement. Furthermore, various dPG@GNS nanocomposites exerted their effects by regulating the activation of Yes-associated protein (YAP) to affect osteogenic differentiation. These results indicate that dPG@GNS nanocomposites have functional group density-dependent influence on the osteogenesis of MSCs, which may provide a new insight into regulating stem cell fate. Y1 - 2020 U6 - https://doi.org/10.1039/d0nr06570f SN - 2040-3364 SN - 2040-3372 VL - 12 IS - 47 SP - 24006 EP - 24019 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Liu, Ruo-Yu A1 - Yan, Huirong A1 - Wang, Xiang-Yu A1 - Shao, Shi A1 - Li, Hui T1 - Gamma-Ray production in the extended halo of the galaxy and possible implications for the origin of galactic cosmic rays JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Various studies have implied the existence of a gaseous halo around the Galaxy extending out to similar to 100 kpc. Galactic cosmic rays (CRs) that propagate to the halo, either by diffusion or by convection with the possibly existing large-scale Galactic wind, can interact with the gas therein and produce gamma-rays via proton-proton collision. We calculate the CR distribution in the halo and the gamma-ray flux, and explore the dependence of the result on model parameters such as diffusion coefficient, CR luminosity, and CR spectral index. We find that the current measurement of isotropic gamma-ray background (IGRB) at less than or similar to TeV with the Fermi Large Area Telescope already approaches a level that can provide interesting constraints on the properties of Galactic CR (e.g., with CR luminosity L-CR <= 1041 erg s(-1)). We also discuss the possibilities of the Fermi bubble and IceCube neutrinos originating from the proton-proton collision between CRs and gas in the halo, as well as the implication of our results for the baryon budget of the hot circumgalactic medium of our Galaxy. Given that the isotropic gamma-ray background is likely to be dominated by unresolved extragalactic sources, future telescopes may extract more individual sources from the IGRB, and hence put even more stringent restrictions on the relevant quantities (such as Galactic CR luminosity and baryon budget in the halo) in the presence of a turbulent halo that we consider. KW - cosmic rays KW - Galaxy: halo KW - gamma rays: diffuse background KW - neutrinos Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/aaf567 SN - 0004-637X SN - 1538-4357 VL - 871 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Yang, Guang A1 - Zheng, Wei A1 - Tao, Guoqing A1 - Wu, Libin A1 - Zhou, Qi-Feng A1 - Kochovski, Zdravko A1 - Ji, Tan A1 - Chen, Huaijun A1 - Li, Xiaopeng A1 - Lu, Yan A1 - Ding, Hong-ming A1 - Yang, Hai-Bo A1 - Chen, Guosong A1 - Jiang, Ming T1 - Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides JF - ACS nano N2 - During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugarbinding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors. KW - glycomaterials KW - diversiform structures KW - hierarchical self-assembly KW - metallocarbohydrates KW - anisotropic structures Y1 - 2019 U6 - https://doi.org/10.1021/acsnano.9b07134 SN - 1936-0851 SN - 1936-086X VL - 13 IS - 11 SP - 13474 EP - 13485 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Al Nakeeb, Noah A1 - Kochovski, Zdravko A1 - Li, Tingting A1 - Zhang, Youjia A1 - Lu, Yan A1 - Schmidt, Bernhard V. K. J. T1 - Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline alpha-cyclodextrin domains JF - RSC Advances N2 - Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via alpha-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for alpha-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Y1 - 2019 U6 - https://doi.org/10.1039/c8ra10672j SN - 2046-2069 VL - 9 IS - 9 SP - 4993 EP - 5001 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Liu, Ruo-Yu A1 - Wang, Kai A1 - Xue, Rui A1 - Taylor, Andrew M. A1 - Wang, Xiang-Yu A1 - Li, Zhuo A1 - Yan, Huirong T1 - Hadronuclear interpretation of a high-energy neutrino event coincident with a blazar flare JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - Although many high-energy neutrinos detected by the IceCube telescope are believed to have an extraterrestrial origin, their astrophysical sources remain a mystery. Recently, an unprecedented discovery of a high-energy muon neutrino event coincident with a multiwavelength flare from a blazar, TXS 0506 + 056, shed some light on the origin of the neutrinos. It is usually believed that a blazar is produced by a relativistic jet launched from an accreting supermassive black hole (SMBH). Here, we show that the high-energy neutrino event can be interpreted by the inelastic hadronuclear interactions between the accelerated cosmic-ray protons in the relativistic jet and the dense gas clouds in the vicinity of the SMBH. Such a scenario only requires a moderate proton power in the jet, which could be much smaller than that required in the conventional hadronic model which instead calls upon the photomeson process. Meanwhile, the flux of the multiwavelength flare from the optical to gamma-ray band can be well explained by invoking a second radiation zone in the jet at a larger distance to the SMBH. In our model, the neutrino emission lasts a shorter time than the multiwavelength flare, so the neutrino event is not necessarily correlated with the flare, but it is probably accompanied by a spectrum hardening above a few giga-electron-volt (GeV). Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevD.99.063008 SN - 2470-0010 SN - 2470-0029 VL - 99 IS - 6 PB - American Physical Society CY - Melville ER - TY - JOUR A1 - Wang, Xiaoxi A1 - Foster, William J. A1 - Yan, J. A1 - Li, A. A1 - Mutti, Maria T1 - Delayed recovery of metazoan reefs on the Laibin-Heshan platform margin following the Middle Permian (Capitanian) mass extinction JF - Global and planetary change N2 - Following the Middle Permian (Capitanian) mass extinction there was a global ‘reef eclipse’, and this event had an important role in the Paleozoic-Mesozoic transition of reef ecosystems. Furthermore, the recovery pattern of reef ecosystems in the Wuchiapingian of South China, before the radiation of Changhsingian reefs, is poorly understood. Here, we present a detailed sedimentological account of the Tieqiao section, South China, which records the only known Wuchiapingian reef setting from South China. Six reef growing phases were identified within six transgressive-regressive cycles. The cycles represent changes of deposition in a shallow basin to a subtidal outer platform setting, and the reefal build-ups are recorded in the shallowest part of the cycles above wave base in the euphotic zone. Our results show that the initial reef recovery started from the shallowing up part of the 1st cycle, within the Clarkina leveni conodont zone, which is two conodont zones earlier than previously recognized. In addition, even though metazoans, such as sponges, do become important in the development of the reef bodies, they are not a major component until later in the Wuchiapingian in the 5th and 6th transgressive-regressive cycles. This suggests a delayed recovery of metazoan reef ecosystems following the Middle Permian extinction. Furthermore, even though sponges do become abundant within the reefs, it is the presence and growth of the encrusters Archaeolithoporella and Tubiphytes and abundance of microbial micrites that play an important role in stabilizing the reef structures that form topographic highs. KW - Reefs KW - Mass extinction KW - Wuchiapingian KW - Archaeolithoporella KW - Permian Y1 - 2019 U6 - https://doi.org/10.1016/j.gloplacha.2019.05.005 SN - 0921-8181 SN - 1872-6364 VL - 180 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chapman, Eric M. A1 - Lant, Benjamin A1 - Ohashi, Yota A1 - Yu, Bin A1 - Schertzberg, Michael A1 - Go, Christopher A1 - Dogra, Deepika A1 - Koskimaki, Janne A1 - Girard, Romuald A1 - Li, Yan A1 - Fraser, Andrew G. A1 - Awad, Issam A. A1 - Abdelilah-Seyfried, Salim A1 - Gingras, Anne-Claude A1 - Derry, William Brent T1 - A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis JF - Nature Communications N2 - Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1(-/-) zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease. Y1 - 2019 U6 - https://doi.org/10.1038/s41467-019-09829-z SN - 2041-1723 VL - 10 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wang, Weiwei A1 - Kratz, Karl A1 - Behl, Marc A1 - Yan, Wan A1 - Liu, Yue A1 - Xu, Xun A1 - Baudis, Stefan A1 - Li, Zhengdong A1 - Kurtz, Andreas A1 - Lendlein, Andreas A1 - Ma, Nan T1 - The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies. KW - Polyether ether ketone KW - mesenchymal stem cells KW - biocompatibility KW - cell-material interaction KW - osteogenic differentiation Y1 - 2015 U6 - https://doi.org/10.3233/CH-152001 SN - 1386-0291 SN - 1875-8622 VL - 61 IS - 2 SP - 301 EP - 321 PB - IOS Press CY - Amsterdam ER -