TY - JOUR A1 - Rader, Oliver A1 - Fauth, K. A1 - Gould, C. A1 - Ruster, C. A1 - Schott, G. M. A1 - Schmidt, G. A1 - Brunner, K. A1 - Molenkamp, Laurens W. A1 - Schutz, G. A1 - Kronast, F. A1 - Durr, H. A. A1 - Eberhardt, W. A1 - Gudat, Wolfgang T1 - Identification of extrinsic Mn contributions in Ga1-xMnxAs by field-dependent magnetic circular X-ray dichroism N2 - We combine sensitivity to atomic number, chemical shifts, probing depth, and magnetic order in a field- dependent magnetic circular X-ray dichroism study at the Mn L-edge of the diluted ferromagnetic semiconductor Ga1-xMnxAs and observe different Mn constituents: ferromagnetic Mn with an n(d) > 5 lineshape and paramagnetic Mn with distinct n(d) = 5 lineshape. The paramagnetic Mn is assigned to interstitials with surface segregation tendency. (c) 2005 Elsevier B.V. All rights reserved Y1 - 2005 SN - 0368-2048 ER - TY - JOUR A1 - Varykhalov, Andrei A1 - Gudat, Wolfgang A1 - Adamchuk, V. K. A1 - Rader, Oliver T1 - Magic numbers in two-dimensional self-organization of C-60 molecules N2 - Employing the chemically passive carbon reconstruction W(110)/C-R(15x3) as substrate for deposition of C-60 molecules, we have discovered by scanning tunneling microscopy two-dimensional self-assembly of fullerenes into uniform molecular nanoclusters with "magic" numbers. Our photoemission measurements determine van der Waals forces as the dominating interaction in this self-organizing two-dimensional molecular gas. Based on this, a theoretical determination of the cluster structures in the framework of the Girifalco model gives perfect agreement with the experiment Y1 - 2006 UR - http://prb.aps.org/pdf/PRB/v73/i24/e241404 U6 - https://doi.org/10.1103/Physrevb.73.241404 ER - TY - JOUR A1 - Shikin, A. M. A1 - Varykhalov, Andrei A1 - Prudnikova, G. V. A1 - Adamchuk, V. K. A1 - Gudat, Wolfgang A1 - Rader, Oliver T1 - Photoemission from stepped W(110) : Initial or final state effect? N2 - The electronic structure of the (110)-oriented terraces of stepped W(331) and W(551) is compared to the one of flat W(110) using angle-resolved photoemission. We identify a surface-localized state which develops perpendicular to the steps into a repeated band structure with the periodicity of the step superlattices. It is shown that a final-state diffraction process rather than an initial-state superlattice effect is the origin of the observed behavior and why it does not affect the entire band structure Y1 - 2004 SN - 0031-9007 ER - TY - JOUR A1 - Varykhalov, Andrei A1 - Shikin, A. M. A1 - Gudat, Wolfgang A1 - Moras, P. A1 - Grazioli, C. A1 - Carbone, C. A1 - Rader, Oliver T1 - Probing the ground state electronic structure of a correlated electron system by quantum well states: Ag/ Ni(111) N2 - The ground state electronic properties of the strongly correlated transition metal Ni are usually not accessible from the excitation spectra measured in photoelectron spectroscopy. We show that the bottom of the Ni d band along [111] can be probed through the energy dependence of the phase of quantum-well states in Ag/Ni(111). Our model description of the quantum-well energies measured by angle-resolved photoemission determines the bottom of the Lambda(1) d band of Ni as 2.6 eV, in full agreement with standard local density theory and at variance with the values of 1.7-1.8 eV from direct angle-resolved photoemission experiments of Ni Y1 - 2005 SN - 0031-9007 ER - TY - JOUR A1 - Rader, Oliver A1 - Pampuch, Carsten A1 - Shikin, A. M. A1 - Gudat, Wolfgang A1 - Okabayashi, J. A1 - Mizokawa, T. A1 - Fujimori, A. A1 - Hayashi, T. A1 - Tanaka, M. A1 - Tanaka, A. A1 - Kimura, A. T1 - Resonant photoemission of Ga1-xMnxAs at the Mn L edge N2 - Ga1-xMnxAs, x=0.043, has been grown ex situ on GaAs(100) by low-temperature molecular-beam epitaxy. On the reprepared p(1x1) surface, resonant photoemission of the valence band shows a 20-fold enhancement of the Mn 3d contribution at the L-3 edge. The difference spectrum is similar to our previously obtained resonant photoemission at the Mn M edge, in particular a strong satellite appears and no clear Fermi edge ruling out strong Mn 3d weight at the valence-band maximum. The x-ray absorption lineshape differs from previous publications. Our calculation based on a configuration-interaction cluster model reproduces the x-ray absorption and the L-3 on-resonance photoemission spectrum for model parameters Delta, U-dd, and (pdsigma) consistent with our previous work and shows the same spectral shape on and off resonance thus rendering resonant photoemission measured at the L-3 edge representative of the Mn 3d contribution. At the same time, the results are more bulk sensitive due to a probing depth about twice as large as for photoemission at the Mn M edge. The confirmation of our previous results obtained at the M edge calls recent photoemission results into question which report the absence of the satellite and good agreement with local-density theory Y1 - 2004 ER - TY - JOUR A1 - Veldkamp, Markus A1 - Erko, Alexei A1 - Gudat, Wolfgang A1 - Abrosimov, Nikolai V. A1 - Alex, Volker A1 - Khasanov, Salavat A1 - Neissendorfer, Frank A1 - Pietsch, Ullrich A1 - Shekhtman, Veniamin T1 - Si(1-x)Ge(x) laterally graded crystals as monochromators for X-Ray absorption spectroscopy studies Y1 - 1999 ER - TY - JOUR A1 - Varykhalov, Andrei A1 - Rader, Oliver A1 - Gudat, Wolfgang T1 - Structure and quantum-size effects in a surface carbide : W(110)/C-R(15 X 3) N2 - Results of the combined investigation of atomic and electronic structure of the W(110)/C-R(15x3) surface carbide are reported. A variety of experimental techniques has been involved such as scanning tunneling microscopy (STM), low-energy electron diffraction, x-ray photoelectron spectroscopy, and angle-resolved photoemission (ARPES). Distance-dependent STM measurements show a nontrivial geometrical behavior in the topography data, demonstrating five different patterns representing the superstructure at different values of the tip-surface separation. Atomic resolution was achieved at lower tunneling gap resistance. An unexpected spatial asymmetry in the distribution of the local density of states across the surface unit cell has been observed as well. Photoelectron spectroscopy of C1s and W4f core levels clarifies the nature of the chemical bonding in the system. The band mapping with ARPES provides information on the wave- vector dependence of the electronic states. Notable quantum size and superlattice effects were discovered in the dispersion of the valence-band states. The experimental data suggests an apparent one-dimensional character of the electronic structure. Lateral quantization and umklapp scattering are proposed as explanation. Finally, based on photoemission and STM measurements, an improved crystallographic model of the tungsten surface carbide is introduced Y1 - 2005 SN - 1098-0121 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Grenzer, Jörg A1 - Geue, Thomas A1 - Neißendorfer, Frank A1 - Brezesinski, Gerald A1 - Symietz, Christian A1 - Möhwald, Helmuth A1 - Gudat, Wolfgang T1 - The energy dispersive reflectometer at BESSY II : a challenge for thin film analysis Y1 - 2001 SN - 0167- 5087 ER -