TY - JOUR A1 - Schewe, Bettina A1 - Blenau, Wolfgang A1 - Walz, Bernd T1 - Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity JF - The journal of experimental biology N2 - Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H+-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na+-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na+-dependent glutamate transporter; (2) the maintenance of resting pHi is Na+, Cl-, concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na+ sensitive and requires V-ATPase activity; (4) the Na+/H+ antiporter is not involved in pHi recovery after a NH4Cl prepulse; and (5) at least one Na+-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na+-dependent transporter maintain normal pH(i) values of pH.7.5. We have also detected the presence of a Na+-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells. KW - Calliphora vicina KW - salivary gland KW - intracellular pH regulation KW - Na+/H+ antiporter KW - NHE KW - vacuolar H+-ATPase KW - V-ATPase KW - intracellular pH KW - insect KW - blowfly KW - BCECF KW - NH4Cl prepulse Y1 - 2012 U6 - https://doi.org/10.1242/jeb.063172 SN - 0022-0949 VL - 215 IS - 8 SP - 1337 EP - 1345 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Röser, Claudia A1 - Jordan, Nadine A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Walz, Bernd A1 - Baumann, Otto A1 - Blenau, Wolfgang T1 - Molecular and pharmacological characterization of serotonin 5-HT2 alpha and 5-HT7 receptors in the salivary glands of the blowfly calliphora vicina JF - PLoS one N2 - Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca2+ and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2 alpha, Cv5-ht7) that share high similarity with mammalian 5-HT2 and 5-HT7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2 alpha-transfected mammalian cells with 5-HT elevates cytosolic [Ca2+] in a dose-dependent manner (EC50 = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC50 = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT2 alpha or Cv5-HT7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv(5)-HT2 alpha receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT7 receptor, and clozapine (1 mu M) antagonizes the effects of 5-HT via Cv5-HT7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca2+- and cAMP-signalling cascades. Citation: Roser C, Jordan N, Balfanz S, Baumann A, Walz B, et al. (2012) Molecular and Pharmacological Characterization of Serotonin 5-HT2a and 5-HT7 Receptors in the Salivary Glands of the Blowfly Calliphora vicina. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0049459 SN - 1932-6203 VL - 7 IS - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Heindorff, Kristoffer A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - Characterization of a Ca2+/calmodulin-dependent AC1 adenylyl cyclase in a non-neuronal tissue, the blowfly salivary gland JF - Cell calcium N2 - Crosstalk between intracellular signalling pathways is a functionally important and widespread phenomenon in cell physiology across phyla. In the salivary gland of the blowfly, serotonin induces fluid secretion via parallel activation of both the InsP(3)/Ca2+ and the cAMP/PKA signalling pathways, which interact on multiple levels. We have determined the molecular identity of a link between both pathways that mediates a Ca2+-dependent rise of intracellular cAMP. Whereas hydrolysis of cAMP via phosphodiesterases is largely independent of Ca2+, cAMP synthesis by adenylyl cyclases (AC) is potentiated in a Ca2+/calmodulin (Ca2+/CaM)-dependent manner. The existence of a Ca2+/CaM-dependent AC is supported by physiological data and a molecular approach. We have cloned Cv rutabaga cDNA, encoding the first blowfly AC, and confirmed its expression in the salivary gland via reverse transcription followed by polymerase chain reaction. The putative gene product of Cv rutabaga is a Ca2+/CaM-dependent type I AC and shows highest homology to Rutabaga from Drosophila. Thus, a Ca2+/CaM-dependent AC serves as a link between the InsP(3)/Ca2+ and the cAMP/PKA signalling pathways in the salivary gland of the blowfly and might be important for the amplification and optimization of the secretory response. KW - Adenylyl cyclase KW - Phosphodiesterase KW - Crosstalk KW - Ca2+ KW - cAMP KW - Intracellular signalling KW - Salivary gland KW - Calliphora vicina KW - Rutabaga Y1 - 2012 U6 - https://doi.org/10.1016/j.ceca.2012.04.016 SN - 0143-4160 VL - 52 IS - 2 SP - 103 EP - 112 PB - Churchill Livingstone CY - Edinburgh ER -