TY - JOUR A1 - Banks, Jo Ann A1 - Nishiyama, Tomoaki A1 - Hasebe, Mitsuyasu A1 - Bowman, John L. A1 - Gribskov, Michael A1 - dePamphilis, Claude A1 - Albert, Victor A. A1 - Aono, Naoki A1 - Aoyama, Tsuyoshi A1 - Ambrose, Barbara A. A1 - Ashton, Neil W. A1 - Axtell, Michael J. A1 - Barker, Elizabeth A1 - Barker, Michael S. A1 - Bennetzen, Jeffrey L. A1 - Bonawitz, Nicholas D. A1 - Chapple, Clint A1 - Cheng, Chaoyang A1 - Correa, Luiz Gustavo Guedes A1 - Dacre, Michael A1 - DeBarry, Jeremy A1 - Dreyer, Ingo A1 - Elias, Marek A1 - Engstrom, Eric M. A1 - Estelle, Mark A1 - Feng, Liang A1 - Finet, Cedric A1 - Floyd, Sandra K. A1 - Frommer, Wolf B. A1 - Fujita, Tomomichi A1 - Gramzow, Lydia A1 - Gutensohn, Michael A1 - Harholt, Jesper A1 - Hattori, Mitsuru A1 - Heyl, Alexander A1 - Hirai, Tadayoshi A1 - Hiwatashi, Yuji A1 - Ishikawa, Masaki A1 - Iwata, Mineko A1 - Karol, Kenneth G. A1 - Koehler, Barbara A1 - Kolukisaoglu, Uener A1 - Kubo, Minoru A1 - Kurata, Tetsuya A1 - Lalonde, Sylvie A1 - Li, Kejie A1 - Li, Ying A1 - Litt, Amy A1 - Lyons, Eric A1 - Manning, Gerard A1 - Maruyama, Takeshi A1 - Michael, Todd P. A1 - Mikami, Koji A1 - Miyazaki, Saori A1 - Morinaga, Shin-ichi A1 - Murata, Takashi A1 - Müller-Röber, Bernd A1 - Nelson, David R. A1 - Obara, Mari A1 - Oguri, Yasuko A1 - Olmstead, Richard G. A1 - Onodera, Naoko A1 - Petersen, Bent Larsen A1 - Pils, Birgit A1 - Prigge, Michael A1 - Rensing, Stefan A. A1 - Mauricio Riano-Pachon, Diego A1 - Roberts, Alison W. A1 - Sato, Yoshikatsu A1 - Scheller, Henrik Vibe A1 - Schulz, Burkhard A1 - Schulz, Christian A1 - Shakirov, Eugene V. A1 - Shibagaki, Nakako A1 - Shinohara, Naoki A1 - Shippen, Dorothy E. A1 - Sorensen, Iben A1 - Sotooka, Ryo A1 - Sugimoto, Nagisa A1 - Sugita, Mamoru A1 - Sumikawa, Naomi A1 - Tanurdzic, Milos A1 - Theissen, Guenter A1 - Ulvskov, Peter A1 - Wakazuki, Sachiko A1 - Weng, Jing-Ke A1 - Willats, William W. G. T. A1 - Wipf, Daniel A1 - Wolf, Paul G. A1 - Yang, Lixing A1 - Zimmer, Andreas D. A1 - Zhu, Qihui A1 - Mitros, Therese A1 - Hellsten, Uffe A1 - Loque, Dominique A1 - Otillar, Robert A1 - Salamov, Asaf A1 - Schmutz, Jeremy A1 - Shapiro, Harris A1 - Lindquist, Erika A1 - Lucas, Susan A1 - Rokhsar, Daniel A1 - Grigoriev, Igor V. T1 - The selaginella genome identifies genetic changes associated with the evolution of vascular plants JF - Science N2 - Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes. Y1 - 2011 U6 - https://doi.org/10.1126/science.1203810 SN - 0036-8075 VL - 332 IS - 6032 SP - 960 EP - 963 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Ruzanski, Christian A1 - Smirnova, Julia A1 - Rejzek, Martin A1 - Cockburn, Darrell A1 - Pedersen, Henriette L. A1 - Pike, Marilyn A1 - Willats, William G. T. A1 - Svensson, Birte A1 - Steup, Martin A1 - Ebenhöh, Oliver A1 - Smith, Alison M. A1 - Field, Robert A. T1 - A bacterial glucanotransferase can replace the complex maltose metabolism required for starch to sucrose conversion in leaves at night JF - The journal of biological chemistry N2 - Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan acceptor. It has recently been suggested that DPE2 generates a heterogeneous series of terminal glucan chains on the heteroglycan that acts as a glucosyl buffer to ensure a constant rate of sucrose synthesis in the leaf at night. Alternatively, DPE2 and/or the heteroglycan may have specific properties important for their function in the plant. To distinguish between these ideas, we compared the properties of DPE2 with those of the Escherichia coli glucanotransferase MalQ. We found that MalQ cannot use the plant heteroglycan as an acceptor for glucosyl transfer. However, experimental and modeling approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed in mutant Arabidopsis plants lacking DPE2. In light of these findings, we discuss the possible evolutionary origins of the complex DPE2-heteroglycan pathway. KW - Carbohydrate Metabolism KW - Computer Modeling KW - Metabolic Regulation KW - Oligosaccharide KW - Plant Biochemistry KW - Glucanotransferase KW - Leaf Cell KW - Maltose Metabolism KW - Starch Degradation Y1 - 2013 U6 - https://doi.org/10.1074/jbc.M113.497867 SN - 0021-9258 SN - 1083-351X VL - 288 IS - 40 SP - 28581 EP - 28598 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER - TY - JOUR A1 - Rajasundaram, Dhivyaa A1 - Runavot, Jean-Luc A1 - Guo, Xiaoyuan A1 - Willats, William G. T. A1 - Meulewaeter, Frank A1 - Selbig, Joachim T1 - Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides JF - PLoS one N2 - A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0112168 SN - 1932-6203 VL - 9 IS - 11 PB - PLoS CY - San Fransisco ER -