TY - JOUR A1 - Ou, Qi A1 - Kulikova, Galina A1 - Yu, Jingxing A1 - Elliott, Austin A1 - Parsons, Bethany A1 - Walker, Richard T1 - Magnitude of the 1920 Haiyuan earthquake reestimated using seismological and geomorphological methods JF - Journal of geophysical research : Solid earth N2 - Reported magnitudes ranging between 7.8 and 8.7 highlight a confusion about the true size of the 1920 Haiyuan earthquake, the largest earthquake recorded in the northeast Tibetan Plateau. We compiled a global data set of previously unlooked-at historical seismograms and performed modern computational analyses on the digitized seismic records. We found the epicenter to be near Haiyuan town and obtained a moment magnitude of M-W=7.90.2. Following traditional approaches, we obtained m(B)=7.90.3 with data from 21 stations and M-S(20)=8.10.2 with data from three stations. Geomorphologically, we mapped the surface rupture and horizontal offsets on high-resolution Pleiades satellite and drone imagery that covered the entire western and middle sections of the 1920 Haiyuan earthquake rupture and compiled offsets reported on the eastern section from field measurements in the 1980s. Careful discrimination between single-event and cumulative offsets suggests average horizontal slips of 3.01.0m on the western section, 4.51.5m on the middle section, and 3.5 +/- 0.5m on the eastern section, indicating a total moment magnitude of M-W=7.8 +/- 0.1. Thus, the seismological and geomorphological results agree within the uncertainties, a weighted average giving a moment magnitude of M-W=7.9 +/- 0.2 for the 1920 Haiyuan earthquake. It is likely that earthquake magnitudes based on the historical M were systematically overestimated.
Plain Language Summary Earthquakes are the main mechanism by which elastic energy accumulating due to tectonic motion is released. As the earthquake magnitude scale is logarithmic, major earthquakes control the bulk of this energy budget and are often the most destructive, like the 1920 Haiyuan earthquake with similar to 230,000 casualties. However, major earthquakes tend to have recurrence periods of several hundred years, longer than our instrumental records. To obtain knowledge of historic major earthquakes, paleoseismologists measure geomorphic offsets and map surface ruptures left by past events and estimate the shaking intensity from historical writings. However, in the case of the Haiyuan earthquake, which happened in the late historic, early instrumental period, the magnitudes reported from these two communities differed significantly. In order to constrain the magnitude of this earthquake for seismic hazard assessment and to reconcile the differences between published magnitudes, we reestimated its magnitude from both newly compiled and digitized seismological records and modern satellite and drone imagery. The results show that the early seismological magnitudes were overestimated, which may affect historical magnitudes systematically. The 1920 Haiyuan earthquake was of a similar magnitude to the 2001 Kokoxili and 2008 Wenchuan earthquakes that also occurred in and around the Tibetan Plateau, instead of more than half a magnitude larger. Y1 - 2020 U6 - https://doi.org/10.1029/2019JB019244 SN - 2169-9313 SN - 2169-9356 VL - 125 IS - 8 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Eigmüller, Philipp A1 - Chaushev, Alexander A1 - Gillen, Edward A1 - Smith, Alexis A1 - Nielsen, Louise D. A1 - Turner, Oliver A1 - Csizmadia, Szilard A1 - Smalley, Barry A1 - Bayliss, Daniel A1 - Belardi, Claudia A1 - Bouchy, Francois A1 - Burleigh, Matthew R. A1 - Cabrera, Juan A1 - Casewell, Sarah L. A1 - Chazelas, Bruno A1 - Cooke, Benjamin F. A1 - Erikson, Anders A1 - Gansicke, Boris T. A1 - Guenther, Maximilian N. A1 - Goad, Michael R. A1 - Grange, Andrew A1 - Jackman, James A. G. A1 - Jenkins, James S. A1 - McCormac, James A1 - Moyano, Maximiliano A1 - Pollacco, Don A1 - Poppenhäger, Katja A1 - Queloz, Didier A1 - Raynard, Liam A1 - Rauer, Heike A1 - Udry, Stephane A1 - Walker, Simon. R. A1 - Watson, Christopher A. A1 - West, Richard G. A1 - Wheatley, Peter J. T1 - NGTS-5b BT - a highly inflated planet offering insights into the sub-Jovian desert JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Planetary population analysis gives us insight into formation and evolution processes. For short-period planets, the sub-Jovian desert has been discussed in recent years with regard to the planet population in the mass/period and radius/period parameter space without taking stellar parameters into account. The Next Generation Transit Survey (NGTS) is optimised for detecting planets in this regime, which allows for further analysis of the sub-Jovian desert. Aims. With high-precision photometric surveys (e.g. with NGTS and TESS), which aim to detect short period planets especially around M/K-type host stars, stellar parameters need to be accounted for when empirical data are compared to model predictions. Presenting a newly discovered planet at the boundary of the sub-Jovian desert, we analyse its bulk properties and use it to show the properties of exoplanets that border the sub-Jovian desert. Methods. Using NGTS light curve and spectroscopic follow-up observations, we confirm the planetary nature of planet NGTS-5b and determine its mass. Using exoplanet archives, we set the planet in context with other discoveries. Results. NGTS-5b is a short-period planet with an orbital period of 3.3569866 +/- 0.0000026 days. With a mass of 0.229 +/- 0.037 M-Jup and a radius of 1.136 +/- 0.023 R-Jup, it is highly inflated. Its mass places it at the upper boundary of the sub-Jovian desert. Because the host is a K2 dwarf, we need to account for the stellar parameters when NGTS-5b is analysed with regard to planet populations. Conclusions. With red-sensitive surveys (e.g. with NGTS and TESS), we expect many more planets around late-type stars to be detected. An empirical analysis of the sub-Jovian desert should therefore take stellar parameters into account. KW - planets and satellites: detection KW - planets and satellites: gaseous planets Y1 - 2019 U6 - https://doi.org/10.1051/0004-6361/201935206 SN - 1432-0746 VL - 625 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Walker, Simon N. A1 - Boynton, Richard J. A1 - Shprits, Yuri Y. A1 - Balikhin, Michael A. A1 - Drozdov, Alexander T1 - Forecast of the energetic electron environment of the radiation belts JF - Space Weather: The International Journal of Research and Applications N2 - Different modeling methodologies possess different strengths and weakness. For instance, data based models may provide superior accuracy but have a limited spatial coverage while physics based models may provide lower accuracy but provide greater spatial coverage. This study investigates the coupling of a data based model of the electron fluxes at geostationary orbit (GEO) with a numerical model of the radiation belt region to improve the resulting forecasts/pastcasts of electron fluxes over the whole radiation belt region. In particular, two coupling methods are investigated. The first assumes an average value for L* for GEO, namely LGEO* L-GEO* = 6.2. The second uses a value of L* that varies with geomagnetic activity, quantified using the Kp index. As the terrestrial magnetic field responds to variations in geomagnetic activity, the value of L* will vary for a specific location. In this coupling method, the value of L* is calculated using the Kp driven Tsyganenko 89c magnetic field model for field line tracing. It is shown that this addition can result in changes in the initialization of the parameters at the Versatile Electron Radiation Belt model outer boundary. Model outputs are compared to Van Allen Probes MagEIS measurements of the electron fluxes in the inner magnetosphere for the March 2015 geomagnetic storm. It is found that the fixed LGEO* L-GEO* coupling method produces a more realistic forecast. KW - radiation belt forecasts KW - data based NARMAX modeling KW - verb simulations; KW - geostationary orbit KW - electron flux forecasts Y1 - 2022 U6 - https://doi.org/10.1029/2022SW003124 SN - 1542-7390 VL - 20 IS - 12 PB - American Geophysical Union CY - Washington ER -