TY - GEN A1 - Nguyen, Vu Hoa A1 - Richert, S. A1 - Park, Hyunji A1 - Böker, Alexander A1 - Schnakenberg, Uwe T1 - Single interdigital transducer as surface acoustic wave impedance sensor T2 - Biosensors N2 - Surface acoustic wave (SAW) devices are well-known for gravimetric sensor applications. In biosensing applications, chemical-and biochemically evoked adsorption processes at surfaces are detected in liquid environments using delay-line or resonator sensor configurations, preferably in combination with appropriate microfluidic devices. In this paper, a novel SAW-based impedance sensor type is introduced which uses only one interdigital electrode transducer (IDT) simultaneously as SAW generator and sensor element. It is shown that the amplitude of the reflected S-11 signal directly depends on the input impedance of the SAW device. The input impedance is strongly influenced by mass adsorption which causes a characteristic and measurable impedance mismatch. KW - SAW impedance sensor KW - microfluidic KW - PHEMA Y1 - 2017 U6 - https://doi.org/10.1016/j.protcy.2017.04.032 SN - 2212-0173 VL - 27 SP - 70 EP - 71 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rosencrantz, Ruben R. A1 - Vu Hoa Nguyen, A1 - Park, Hyunji A1 - Schulte, Christine A1 - Böker, Alexander A1 - Schnakenberg, Uwe A1 - Elling, Lothar T1 - Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis N2 - A localized surface plasmon resonance biosensor in a flow-through configuration was applied for investigating kinetics of lectin binding to surface-grafted glycopolymer brushes. Polycarbonate filter membranes with pore sizes of 400 nm were coated with a 114-nm thick gold layer and used as substrate for surface-initiated atom-transfer radical polymerization of a glycomonomer. These grafted from glycopolymer brushes were further modified with two subsequent enzymatic reactions on the surface to yield an immobilized trisaccharide presenting brush. Specific binding of lectins including Clostridium difficile toxin A receptor domain to the glycopolymer brush surface could be investigated in a microfluidic setup with flow-through of the analytes and transmission surface plasmon resonance spectroscopy. KW - Localized surface plasmon resonance KW - Glycopolymer brush KW - Microfluidics KW - Bacterial toxin KW - Glycosyltransferase KW - Biosensors Y1 - 2016 U6 - https://doi.org/10.1007/s00216-016-9667-9 SN - 1618-2642 SN - 1618-2650 VL - 408 SP - 5633 EP - 5640 PB - Springer CY - Heidelberg ER -