TY - JOUR A1 - Buljak, Vladimir A1 - Bruno, Giovanni T1 - Numerical modeling of thermally induced microcracking in porous ceramics BT - an approach using cohesive elements JF - Journal of the European Ceramic Society N2 - A numerical framework is developed to study the hysteresis of elastic properties of porous ceramics as a function of temperature. The developed numerical model is capable of employing experimentally measured crystallographic orientation distribution and coefficient of thermal expansion values. For realistic modeling of the microstructure, Voronoi polygons are used to generate polycrystalline grains. Some grains are considered as voids, to simulate the material porosity. To model intercrystalline cracking, cohesive elements are inserted along grain boundaries. Crack healing (recovery of the initial properties) upon closure is taken into account with special cohesive elements implemented in the commercial code ABAQUS. The numerical model can be used to estimate fracture properties governing the cohesive behavior through inverse analysis procedure. The model is applied to a porous cordierite ceramic. The obtained fracture properties are further used to successfully simulate general non-linear macroscopic stress-strain curves of cordierite, thereby validating the model. KW - analysis KW - Cohesive finite elements KW - Interfacial strength Y1 - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2018.03.041 SN - 0955-2219 SN - 1873-619X VL - 38 IS - 11 SP - 4099 EP - 4108 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Buljak, Vladimir A1 - Oesch, Tyler A1 - Bruno, Giovanni T1 - Simulating Fiber-Reinforced Concrete Mechanical Performance Using CT-Based Fiber Orientation Data JF - Materials N2 - The main hindrance to realistic models of fiber-reinforced concrete (FRC) is the local materials property variation, which does not yet reliably allow simulations at the structural level. The idea presented in this paper makes use of an existing constitutive model, but resolves the problem of localized material variation through X-ray computed tomography (CT)-based pre-processing. First, a three-point bending test of a notched beam is considered, where pre-test fiber orientations are measured using CT. A numerical model is then built with the zone subjected to progressive damage, modeled using an orthotropic damage model. To each of the finite elements within this zone, a local coordinate system is assigned, with its longitudinal direction defined by local fiber orientations. Second, the parameters of the constitutive damage model are determined through inverse analysis using load-displacement data obtained from the test. These parameters are considered to clearly explain the material behavior for any arbitrary external action and fiber orientation, for the same geometrical properties and volumetric ratio of fibers. Third, the effectiveness of the resulting model is demonstrated using a second, control experiment. The results of the control experiment analyzed in this research compare well with the model results. The ultimate strength was predicted with an error of about 6%, while the work-of-load was predicted within 4%. It demonstrates the potential of this method for accurately predicting the mechanical performance of FRC components. KW - Fiber-reinforced concrete KW - X-ray computed tomography (CT) KW - anisotropic fiber orientation KW - inverse analysis Y1 - 2019 U6 - https://doi.org/10.3390/ma12050717 SN - 1996-1944 VL - 12 IS - 5 PB - MDPI CY - Basel ER -