TY - JOUR A1 - Mooij, Wolf M. A1 - Brederveld, Robert J. A1 - de Klein, Jeroen J. M. A1 - DeAngelis, Don L. A1 - Downing, Andrea S. A1 - Faber, Michiel A1 - Gerla, Daan J. A1 - Hipsey, Matthew R. A1 - Janse, Jan H. A1 - Janssen, Annette B. G. A1 - Jeuken, Michel A1 - Kooi, Bob W. A1 - Lischke, Betty A1 - Petzoldt, Thomas A1 - Postma, Leo A1 - Schep, Sebastiaan A. A1 - Scholten, Huub A1 - Teurlincx, Sven A1 - Thiange, Christophe A1 - Trolle, Dennis A1 - van Dam, Anne A. A1 - van Gerven, Luuk P. A. A1 - van Nes, Egbert H. A1 - Kuiper, Jan J. T1 - Serving many at once: How a database approach can create unity in dynamical ecosystem modelling JF - Environmental modelling & software with environment data news N2 - Simulation modelling in ecology is a field that is becoming increasingly compartmentalized. Here we propose a Database Approach To Modelling (DATM) to create unity in dynamical ecosystem modelling with differential equations. In this approach the storage of ecological knowledge is independent of the language and platform in which the model will be run. To create an instance of the model, the information in the database is translated and augmented with the language and platform specifics. This process is automated so that a new instance can be created each time the database is updated. We describe the approach using the simple Lotka-Volterra model and the complex ecosystem model for shallow lakes PCLake, which we automatically implement in the frameworks OSIRIS, GRIND for MATLAB, ACSL, R, DUFLOW and DELWAQ. A clear advantage of working in a database is the overview it provides. The simplicity of the approach only adds to its elegance. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/). KW - Modelling framework KW - Programming language KW - Differential equation KW - Community-based modelling KW - Database approach to modelling KW - DATM Y1 - 2014 U6 - https://doi.org/10.1016/j.envsoft.2014.04.004 SN - 1364-8152 SN - 1873-6726 VL - 61 SP - 266 EP - 273 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Janssen, Annette B. G. A1 - Arhonditsis, George B. A1 - Beusen, Arthur A1 - Bolding, Karsten A1 - Bruce, Louise A1 - Bruggeman, Jorn A1 - Couture, Raoul-Marie A1 - Downing, Andrea S. A1 - Elliott, J. Alex A1 - Frassl, Marieke A. A1 - Gal, Gideon A1 - Gerla, Daan J. A1 - Hipsey, Matthew R. A1 - Hu, Fenjuan A1 - Ives, Stephen C. A1 - Janse, Jan H. A1 - Jeppesen, Erik A1 - Joehnk, Klaus D. A1 - Kneis, David A1 - Kong, Xiangzhen A1 - Kuiper, Jan J. A1 - Lehmann, Moritz K. A1 - Lemmen, Carsten A1 - Oezkundakci, Deniz A1 - Petzoldt, Thomas A1 - Rinke, Karsten A1 - Robson, Barbara J. A1 - Sachse, Rene A1 - Schep, Sebastiaan A. A1 - Schmid, Martin A1 - Scholten, Huub A1 - Teurlincx, Sven A1 - Trolle, Dennis A1 - Troost, Tineke A. A1 - Van Dam, Anne A. A1 - Van Gerven, Luuk P. A. A1 - Weijerman, Mariska A1 - Wells, Scott A. A1 - Mooij, Wolf M. T1 - Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective JF - Aquatic ecology : the international forum covering research in freshwater and marine environments N2 - Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5-10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary. KW - Water quality KW - Ecology KW - Geochemistry KW - Hydrology KW - Hydraulics KW - Hydrodynamics KW - Physical environment KW - Socio-economics KW - Model availability KW - Standardization KW - Linking Y1 - 2015 U6 - https://doi.org/10.1007/s10452-015-9544-1 SN - 1386-2588 SN - 1573-5125 VL - 49 IS - 4 SP - 513 EP - 548 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - van Gerven, Luuk P. A. A1 - Brederveld, Robert J. A1 - de Klein, Jeroen J. M. A1 - DeAngelis, Don L. A1 - Downing, Andrea S. A1 - Faber, Michiel A1 - Gerla, Daan J. A1 - Janse, Jan H. A1 - Janssen, Annette B. G. A1 - Jeuken, Michel A1 - Kooi, Bob W. A1 - Kuiper, Jan J. A1 - Lischke, Betty A1 - Liu, Sien A1 - Petzoldt, Thomas A1 - Schep, Sebastiaan A. A1 - Teurlincx, Sven A1 - Thiange, Christophe A1 - Trolle, Dennis A1 - van Nes, Egbert H. A1 - Mooij, Wolf M. T1 - Advantages of concurrent use of multiple software frameworks in water quality modelling using a database approach JF - Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology N2 - Water quality modelling deals with multidisciplinary questions ranging from fundamental to applied. Addressing this broad range of questions requires multiple analysis techniques and therefore multiple frameworks. Through the recently developed database approach to modelling (DATM), it has become possible to run a model in multiple software frameworks without much overhead. Here we apply DATM to the ecosystem model for ditches PCDitch and its twin model for shallow lakes PCLake. Using DATM, we run these models in six frameworks (ACSL, DELWAQ, DUFLOW, GRIND for MATLAB, OSIRIS and R), and report on the possible model analyses with tools provided by each framework. We conclude that the dynamic link between frameworks and models resulting from DATM has the following main advantages: it allows one to use the framework one is familiar with for most model analyses and eases switching between frameworks for complementary model analyses, including the switch between a 0-D and 1-D to 3-D setting. Moreover, the strength of each framework - including runtime performance - can now be easily exploited. We envision that a community-based further development of the concept can contribute to the future development of water quality modelling, not only by addressing multidisciplinary questions but also by facilitating the exchange of models and process formulations within the community of water quality modellers. KW - Database Approach To Modelling KW - DATM KW - PCLake KW - PCDitch KW - OSIRIS KW - ACSL KW - R KW - GRIND KW - DUFLOW KW - DELWAQ KW - Modelling Framework KW - Model Implementation KW - Model Analysis KW - Differential Equations KW - Community-based Modelling Y1 - 2015 U6 - https://doi.org/10.1127/fal/2015/0631 SN - 1863-9135 VL - 186 IS - 1-2 SP - 5 EP - 20 PB - Schweizerbart CY - Stuttgart ER -