TY - JOUR A1 - Frasca, Stefano A1 - Rojas, Oscar A1 - Salewski, Johannes A1 - Neumann, Bettina A1 - Stiba, Konstanze A1 - Weidinger, Inez M. A1 - Tiersch, Brigitte A1 - Leimkühler, Silke A1 - Koetz, Joachim A1 - Wollenberger, Ursula T1 - Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode JF - Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society N2 - The present study reports a facile approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase (hSO) immobilized on a gold nanoparticles modified electrode. The spherical core shell AuNPs were prepared via a new method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquids resulting particles with a diameter less than 10 nm. These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode where then hSO was adsorbed and an enhanced interfacial electron transfer and electrocatalysis was achieved. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s, a linear detection range between 0.5 and 5.4 mu M with a high sensitivity (1.85 nA mu M-1). The investigated system provides remarkable advantages in the possibility to work at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples. KW - Direct electron transfer KW - Gold nanoparticle KW - Human sulfite oxidase KW - Ionic liquid KW - Sulfite biosensor Y1 - 2012 U6 - https://doi.org/10.1016/j.bioelechem.2011.11.012 SN - 1567-5394 VL - 87 SP - 33 EP - 41 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Vergani, Marco A1 - Carminati, Marco A1 - Ferrari, Giorgio A1 - Landini, Ettore A1 - Caviglia, Claudia A1 - Heiskanen, Arto A1 - Comminges, Clement A1 - Zor, Kinga A1 - Sabourin, David A1 - Dufva, Martin A1 - Dimaki, Maria A1 - Raiteri, Roberto A1 - Wollenberger, Ursula A1 - Emneus, Jenny A1 - Sampietro, Marco T1 - Multichannel bipotentiostat integrated with a microfluidic platform for electrochemical real-time monitoring of cell cultures JF - IEEE Transactions on biomedical circuits and systems N2 - An electrochemical detection system specifically designed for multi-parameter real-time monitoring of stem cell culturing/differentiation in a microfluidic system is presented. It is composed of a very compact 24-channel electronic board, compatible with arrays of microelectrodes and coupled to a microfluidic cell culture system. A versatile data acquisition software enables performing amperometry, cyclic voltammetry and impedance spectroscopy in each of the 12 independent chambers over a 100 kHz bandwidth with current resolution down to 5 pA for 100 ms measuring time. The design of the platform, its realization and experimental characterization are reported, with emphasis on the analysis of impact of input capacitance (i.e., microelectrode size) and microfluidic pump operation on current noise. Programmable sequences of successive injections of analytes (ferricyanide and dopamine) and rinsing buffer solution as well as the impedimetric continuous tracking for seven days of the proliferation of a colony of PC12 cells are successfully demonstrated. KW - Electrochemical measurements KW - impedance spectroscopy KW - microfluidics KW - multichannel potentiostat KW - stem cell monitoring Y1 - 2012 U6 - https://doi.org/10.1109/TBCAS.2012.2187783 SN - 1932-4545 VL - 6 IS - 5 SP - 498 EP - 507 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Colas, Helene A1 - Ewen, Kerstin M. A1 - Hannemann, Frank A1 - Bistolas, Nikitas A1 - Wollenberger, Ursula A1 - Bernhardt, Rita A1 - de Oliveira, Pedro T1 - Direct and mediated electrochemical response of the cytochrome P450 106A2 from Bacillus megaterium ATCC 13368 JF - Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society N2 - CYP106A2 is one of only a few known steroid hydroxylases of bacterial origin, which might be interesting for biotechnological applications. Despite the enzyme having been studied for more than 30 years, its physiological function remains elusive. To date, there have been no reports of the redox potential of CYP106A2, which was supposed to be unusually low for a cytochrome P450. In this work we show that cyclic voltammetry is not only suitable to determine the redox potential of challenging proteins such as CYP106A2, measured at - 128 mV vs. NHE, but also to study molecular interactions of the enzyme with different interaction partners via the respective electrochemical responses. The effect of small ligands, such as carbon monoxide and cyanide, was observed on the cyclic voltammograms of CYP106A2. Furthermore, we found that Tween 80 caused a positive shift of the redox potential of immobilised CYP106A2 indicative for water expulsion from the haem environment. Moreover, electron transfer mediation phenomena with biological redox partners (e.g. ferredoxins) were studied. Finally, the influence of two different kinds of substrates on the electrochemical response of CYP106A2 was assessed, aligning observations from spectral and electrochemical studies. KW - Cytochrome P450 KW - Cyclic voltammetry KW - Modified electrode KW - Protein interaction KW - Substrate binding Y1 - 2012 U6 - https://doi.org/10.1016/j.bioelechem.2012.01.006 SN - 1567-5394 VL - 87 IS - 5 SP - 71 EP - 77 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Yarman, Aysu A1 - Gröbe, Glenn A1 - Neumann, Bettina A1 - Kinne, Mathias A1 - Gajovic-Eichelmann, Nenad A1 - Wollenberger, Ursula A1 - Hofrichter, Martin A1 - Ullrich, Rene A1 - Scheibner, Katrin A1 - Scheller, Frieder W. T1 - The aromatic peroxygenase from Marasmius rutola-a new enzyme for biosensor applications JF - Analytical & bioanalytical chemistry N2 - The aromatic peroxygenase (APO; EC 1.11.2.1) from the agraric basidomycete Marasmius rotula (MroAPO) immobilized at the chitosan-capped gold-nanoparticle-modified glassy carbon electrode displayed a pair of redox peaks with a midpoint potential of -278.5 mV vs. AgCl/AgCl (1 M KCl) for the Fe(2+)/Fe(3+) redox couple of the heme-thiolate-containing protein. MroAPO oxidizes aromatic substrates such as aniline, p-aminophenol, hydroquinone, resorcinol, catechol, and paracetamol by means of hydrogen peroxide. The substrate spectrum overlaps with those of cytochrome P450s and plant peroxidases which are relevant in environmental analysis and drug monitoring. In M. rotula peroxygenase-based enzyme electrodes, the signal is generated by the reduction of electrode-active reaction products (e.g., p-benzoquinone and p-quinoneimine) with electro-enzymatic recycling of the analyte. In these enzyme electrodes, the signal reflects the conversion of all substrates thus representing an overall parameter in complex media. The performance of these sensors and their further development are discussed. KW - Unspecific peroxygenase KW - Cytochrome P450 KW - Biosensors KW - Phenolic substances Y1 - 2012 U6 - https://doi.org/10.1007/s00216-011-5497-y SN - 1618-2642 VL - 402 IS - 1 SP - 405 EP - 412 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Sarauli, David A1 - Riedel, Marc A1 - Wettstein, Christoph A1 - Hahn, Robert A1 - Stiba, Konstanze A1 - Wollenberger, Ursula A1 - Leimkühler, Silke A1 - Schmuki, Patrik A1 - Lisdat, Fred T1 - Semimetallic TiO2 nanotubes new interfaces for bioelectrochemical enzymatic catalysis JF - Journal of materials chemistry N2 - Different self-organized TiO2 nanotube structures are shown to represent new interfaces for the achievement of bioelectrochemical enzymatic catalysis involving redox proteins and enzymes without further surface modification or the presence of mediators. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm16427b SN - 0959-9428 VL - 22 IS - 11 SP - 4615 EP - 4618 PB - Royal Society of Chemistry CY - Cambridge ER -