TY - JOUR A1 - Hortobagyi, Tibor A1 - Lesinski, Melanie A1 - Fernandez-del-Olmo, Miguel A1 - Granacher, Urs T1 - Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis JF - European journal of applied physiology N2 - We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (-6.4 %, effect size = -0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance. KW - Exercise KW - Muscle KW - Force KW - Power KW - Skill KW - Reflex KW - Endocrine KW - Metabolism Y1 - 2015 U6 - https://doi.org/10.1007/s00421-015-3194-9 SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 8 SP - 1605 EP - 1625 PB - Springer CY - New York ER - TY - JOUR A1 - Granacher, Urs A1 - Prieske, Olaf A1 - Majewski, M. A1 - Büsch, Dirk A1 - Mühlbauer, Thomas T1 - The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players JF - International journal of sports medicine N2 - The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15 +/- 1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46f1.36). Additionally, a Training groupxTime interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance. KW - strength KW - jump KW - speed KW - agility KW - balance Y1 - 2015 U6 - https://doi.org/10.1055/s-0034-1395519 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 5 SP - 386 EP - 394 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Krüger, Tom A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs T1 - Role of the trunk during drop jumps on stable and unstable surfaces JF - European journal of applied physiology N2 - The present study investigated associations between trunk muscle strength, jump performance, and lower limb kinematics during drop jumps on stable and unstable surfaces. Next to this behavioral approach, correlations were also computed on a neuromuscular level between trunk and leg muscle activity during the same test conditions. Twenty-nine healthy and physically active subjects (age 23 +/- A 3 years) were enrolled in this study. Peak isokinetic torque (PIT) of the trunk flexors and extensors was assessed separately on an isokinetic device. In addition, tests included drop jumps (DJ) on a force plate under stable and unstable (i.e., balance pad on top of the force plate) surfaces. Lower limb kinematics as well as electromyographic activity of selected trunk and leg muscles were analyzed. Significant positive but small correlations (0.50 a parts per thousand currency sign r a parts per thousand currency sign 0.66, p < 0.05) were detected between trunk extensor PIT and athletic performance measures (i.e., DJ height, DJ performance index), irrespective of surface condition. Further, significant negative but small correlation coefficients were examined between trunk extensor PIT and knee valgus motion under stable and unstable surface conditions (-0.48 a parts per thousand currency sign r a parts per thousand currency sign -0.45, p < 0.05). In addition, significant positive but small correlations (0.45 a parts per thousand currency sign r a parts per thousand currency sign 0.68, p < 0.05) were found between trunk and leg muscle activity, irrespective of surface condition. Behavioral and neuromuscular data from this study indicate that, irrespective of the surface condition (i.e., jumping on stable or unstable ground), the trunk plays a minor role for leg muscle performance/activity during DJ. This implies only limited effects of trunk muscle strengthening on jump performance in the stretch-shortening cycle. KW - Core stability KW - Jump height KW - Knee valgus motion KW - Ground reaction force KW - Stretch-shortening cycle KW - Electromyography Y1 - 2015 U6 - https://doi.org/10.1007/s00421-014-3004-9 SN - 1439-6319 SN - 1439-6327 VL - 115 IS - 1 SP - 139 EP - 146 PB - Springer CY - New York ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 270 KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-75100 ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Association of dual-task walking performance and leg muscle quality in healthy children JF - BMC pediatrics N2 - Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability. KW - Gait KW - Cognitive interference KW - Body composition KW - Muscle mass KW - Children Y1 - 2015 U6 - https://doi.org/10.1186/s12887-015-0317-8 SN - 1471-2431 VL - 15 IS - 2 PB - BioMed Central CY - London ER - TY - GEN A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9–12 Years BT - findings from a Longitudinal Study N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 282 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-86613 ER - TY - GEN A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Cardinale, Marco T1 - Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults N2 - The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 268 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-73448 ER - TY - JOUR A1 - Golle, Kathleen A1 - Mühlbauer, Thomas A1 - Wick, Ditmar A1 - Granacher, Urs T1 - Physical Fitness Percentiles of German Children Aged 9–12 Years BT - findings from a Longitudinal Study JF - PLoS ONE N2 - Background Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., low or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values. Methods Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (i.e., speed), the 1-kg ball push test, the triple hop test (i.e., upper- and lower- extremity muscular power), the stand-and-reach test (i.e., flexibility), the star run test (i.e., agility), and the 9-min run test (i.e., endurance). Age- and sex-specific percentile values (i.e., P10 to P90) were generated using the Lambda, Mu, and Sigma method. Adjusted (for change in body weight, height, and baseline performance) age- and sex-differences as well as the interactions thereof were expressed by calculating effect sizes (Cohen’s d). Results Significant main effects of Age were detected for all physical fitness tests (d = 0.40–1.34), whereas significant main effects of Sex were found for upper-extremity muscular power (d = 0.55), flexibility (d = 0.81), agility (d = 0.44), and endurance (d = 0.32) only. Further, significant Sex by Age interactions were observed for upper-extremity muscular power (d = 0.36), flexibility (d = 0.61), and agility (d = 0.27) in favor of girls. Both, linear and curvilinear shaped curves were found for percentile values across the fitness tests. Accelerated (curvilinear) improvements were observed for upper-extremity muscular power (boys: 10–11 yrs; girls: 9–11 yrs), agility (boys: 9–10 yrs; girls: 9–11 yrs), and endurance (boys: 9–10 yrs; girls: 9–10 yrs). Tabulated percentiles for the 9-min run test indicated that running distances between 1,407–1,507 m, 1,479–1,597 m, 1,423–1,654 m, and 1,433–1,666 m in 9- to 12-year-old boys and 1,262–1,362 m, 1,329–1,434 m, 1,392–1,501 m, and 1,415–1,526 m in 9- to 12-year-old girls correspond to a “medium” fitness level (i.e., P40 to P60) in this population. Conclusions The observed differences in physical fitness development between boys and girls illustrate that age- and sex-specific maturational processes might have an impact on the fitness status of healthy children. Our statistical analyses revealed linear (e.g., lower-extremity muscular power) and curvilinear (e.g., agility) models of fitness improvement with age which is indicative of timed and capacity-specific fitness development pattern during childhood. Lastly, the provided age- and sex-specific percentile values can be used by coaches for talent identification and by teachers for rating/grading of children’s motor performance. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0142393 SN - 1932-6203 VL - 10 IS - 11 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - JOUR A1 - Beurskens, Rainer A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Gollhofer, Albert A1 - Cardinale, Marco T1 - Effects of heavy-resistance strength and balance training on unilateral and bilateral leg strength performance in old adults JF - PLoS one N2 - The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p < .001; d = 2.61–3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni- and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. Y1 - 2015 U6 - https://doi.org/10.1371/journal.pone.0118535 SN - 1932-6203 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - GEN A1 - Granacher, Urs A1 - Hortobágyi, Tibor T1 - Exercise to improve mobility in healthy aging T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 897 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432419 SN - 1866-8372 IS - 897 ER - TY - GEN A1 - Kibele, Armin A1 - Granacher, Urs A1 - Mühlbauer, Thomas A1 - Behm, David George T1 - Stable, Unstable, and Metastable States of Equilibrium: Definitions and Applications to Human Movement T2 - Journal of sports science & medicine Y1 - 2015 SN - 1303-2968 VL - 14 IS - 4 SP - 885 EP - 887 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - JOUR A1 - Hortobágyi, Tibor A1 - Lesinski, Melanie A1 - Gäbler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Effects of three types of exercise interventions on healthy old adults’ gait speed BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 % (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset. KW - resistance training KW - exercise intervention KW - gait speed KW - power training KW - mobility disability Y1 - 2015 U6 - https://doi.org/10.1007/s40279-015-0371-2 SN - 1179-2035 SN - 0112-1642 N1 - Erratum in: Sports Med. 2016 Mar;46(3):453. doi: 10.1007/s40279-016-0498-9. VL - 45 SP - 1627 EP - 1643 PB - Springer CY - Berlin ER - TY - JOUR A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background Balance training (BT) has been used for the promotion of balance and sports-related skills as well as for prevention and rehabilitation of lower extremity sport injuries. However, evidence-based dose-response relationships in BT parameters have not yet been established. Objective The objective of this systematic literature review and meta-analysis was to determine dose-response relationships in BT parameters that lead to improvements in balance in young healthy adults with different training status. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Knowledge, and SPORTDiscus from January 1984 up to May 2014 to capture all articles related to BT in young healthy adults. Study Eligibility Criteria A systematic approach was used to evaluate the 596 articles identified for initial review. Only randomized controlled studies were included if they investigated BT in young healthy adults (16-40 years) and tested at least one behavioral balance performance outcome. In total, 25 studies met the inclusion criteria for review. Study Appraisal and Synthesis Methods Studies were evaluated using the physiotherapy evidence database (PEDro) scale. Within-subject effect sizes (ESdw) and between-subject effect sizes (ESdb) were calculated. The included studies were coded for the following criteria: training status (elite athletes, sub-elite athletes, recreational athletes, untrained subjects), training modalities (training period, frequency, volume, etc.), and balance outcome (test for the assessment of steady-state, proactive, and reactive balance). Results Mean ESdb demonstrated that BT is an effective means to improve steady-state (ESdb = 0.73) and proactive balance (ESdb = 0.92) in healthy young adults. Studies including elite athletes showed the largest effects (ESdb = 1.29) on measures of steady-state balance as compared with studies analyzing sub-elite athletes (ESdb = 0.32), recreational athletes (ESdb = 0.69), and untrained subjects (ESdb = 0.82). Our analyses regarding dose-response relationships in BT revealed that a training period of 11-12 weeks (ESdb = 1.09), a training frequency of three (mean ESdb = 0.72) or six (single ESdb = 1.84) sessions per week, at least 16-19 training sessions in total (ESdb = 1.12), a duration of 11-15 min for a single training session (ESdb = 1.11), four exercises per training session (ESdb = 1.29), two sets per exercise (ESdb = 1.63), and a duration of 21-40 s for a single BT exercise (ESdb = 1.06) is most effective in improving measures of steady-state balance. Due to a small number of studies, dose-response relationships of BT for measures of proactive and reactive balance could not be qualified. Limitations The present findings must be interpreted with caution because it is difficult to separate the impact of a single training modality (e.g., training frequency) from that of the others. Moreover, the quality of the included studies was rather limited, with a mean PEDro score of 5. Conclusions Our detailed analyses revealed effective BT parameters for the improvement of steady-state balance. Thus, practitioners and coaches are advised to consult the identified dose-response relationships of this systematic literature review and meta-analysis to implement effective BT protocols in clinical and sports-related contexts. However, further research of high methodological quality is needed to (1) determine dose-response relationships of BT for measures of proactive and reactive balance, (2) define effective sequencing protocols in BT (e.g., BT before or after a regular training session), (3) discern the effects of detraining, and (4) develop a feasible and effective method to regulate training intensity in BT. Y1 - 2015 U6 - https://doi.org/10.1007/s40279-014-0284-5 SN - 0112-1642 SN - 1179-2035 VL - 45 IS - 4 SP - 557 EP - 576 PB - Springer CY - Northcote ER - TY - GEN A1 - Granacher, Urs A1 - Schellbach, Jörg A1 - Klein, Katja A1 - Prieske, Olaf A1 - Baeyens, Jean-Pierre A1 - Mühlbauer, Thomas T1 - Effects of core strength training using stable versus unstable surfaces on physical fitness in adolescents BT - a randomized controlled trial N2 - Background It has been demonstrated that core strength training is an effective means to enhance trunk muscle strength (TMS) and proxies of physical fitness in youth. Of note, cross-sectional studies revealed that the inclusion of unstable elements in core strengthening exercises produced increases in trunk muscle activity and thus provide potential extra training stimuli for performance enhancement. Thus, utilizing unstable surfaces during core strength training may even produce larger performance gains. However, the effects of core strength training using unstable surfaces are unresolved in youth. This randomized controlled study specifically investigated the effects of core strength training performed on stable surfaces (CSTS) compared to unstable surfaces (CSTU) on physical fitness in school-aged children. Methods Twenty-seven (14 girls, 13 boys) healthy subjects (mean age: 14 ± 1 years, age range: 13–15 years) were randomly assigned to a CSTS (n = 13) or a CSTU (n = 14) group. Both training programs lasted 6 weeks (2 sessions/week) and included frontal, dorsal, and lateral core exercises. During CSTU, these exercises were conducted on unstable surfaces (e.g., TOGU© DYNAIR CUSSIONS, THERA-BAND© STABILITY TRAINER). Results Significant main effects of Time (pre vs. post) were observed for the TMS tests (8-22%, f = 0.47-0.76), the jumping sideways test (4-5%, f = 1.07), and the Y balance test (2-3%, f = 0.46-0.49). Trends towards significance were found for the standing long jump test (1-3%, f = 0.39) and the stand-and-reach test (0-2%, f = 0.39). We could not detect any significant main effects of Group. Significant Time x Group interactions were detected for the stand-and-reach test in favour of the CSTU group (2%, f = 0.54). Conclusions Core strength training resulted in significant increases in proxies of physical fitness in adolescents. However, CSTU as compared to CSTS had only limited additional effects (i.e., stand-and-reach test). Consequently, if the goal of training is to enhance physical fitness, then CSTU has limited advantages over CSTS. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 297 KW - Resistance training KW - Trunk muscle strength KW - Physical fitness Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-93490 ER - TY - JOUR A1 - Lesinski, Melanie A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Objectives To quantify age, sex, sport and training type-specific effects of resistance training on physical performance, and to characterise dose-response relationships of resistance training parameters that could maximise gains in physical performance in youth athletes. Design Systematic review and meta-analysis of intervention studies. Data sources Studies were identified by systematic literature search in the databases PubMed and Web of Science (1985-2015). Weighted mean standardised mean differences (SMDwm) were calculated using random-effects models. Eligibility criteria for selecting studies Only studies with an active control group were included if these investigated the effects of resistance training in youth athletes (6-18 years) and tested at least one physical performance measure. Results 43 studies met the inclusion criteria. Our analyses revealed moderate effects of resistance training on muscle strength and vertical jump performance (SMDwm 0.8-1.09), and small effects on linear sprint, agility and sport-specific performance (SMDwm 0.58-0.75). Effects were moderated by sex and resistance training type. Independently computed dose-response relationships for resistance training parameters revealed that a training period of >23 weeks, 5 sets/exercise, 6-8 repetitions/set, a training intensity of 80-89% of 1 repetition maximum (RM), and 3-4 min rest between sets were most effective to improve muscle strength (SMDwm 2.09-3.40). Summary/conclusions Resistance training is an effective method to enhance muscle strength and jump performance in youth athletes, moderated by sex and resistance training type. Dose-response relationships for key training parameters indicate that youth coaches should primarily implement resistance training programmes with fewer repetitions and higher intensities to improve physical performance measures of youth athletes. Y1 - 2016 U6 - https://doi.org/10.1136/bjsports-2015-095497 SN - 0306-3674 SN - 1473-0480 VL - 50 SP - 781 EP - 795 PB - BMJ Publishing Group CY - London ER - TY - JOUR A1 - Lacroix, Andre A1 - Kressig, Reto W. A1 - Mühlbauer, Thomas A1 - Gschwind, Yves J. A1 - Pfenninger, Barbara A1 - Bruegger, Othmar A1 - Granacher, Urs T1 - Effects of a Supervised versus an Uniupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial JF - Gerontology N2 - Background: Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. Objective:This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Methods: Sixty-six older adults (men: 25, women: 41; age 73 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Results: Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group x time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Conclusion: Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. (C) 2015 The Author(s) Published by S. Karger AG, Basel KW - Sensorimotor training KW - Resistance training KW - Gym-based/home-based training KW - Detraining KW - Seniors Y1 - 2016 U6 - https://doi.org/10.1159/000442087 SN - 0304-324X SN - 1423-0003 VL - 62 SP - 275 EP - 288 PB - Karger CY - Basel ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Borde, Ron A1 - Gube, M. A1 - Bruhn, S. A1 - Behm, David George A1 - Granacher, Urs T1 - Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability JF - Learning and individual differences N2 - Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 +/- 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band (R) Stability Trainer, Togu (c) Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P<0.05, d=0.86), 10-20-m sprint time (3%, P<0.05, d=2.56), and kicking performance (1%, P<0.01, d=1.28). No significant Groupxtest interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training. KW - Elite sports KW - jumping KW - agility KW - sprint KW - ball speed KW - electromyography Y1 - 2016 U6 - https://doi.org/10.1111/sms.12403 SN - 0905-7188 SN - 1600-0838 VL - 26 SP - 48 EP - 56 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Wallenta, Christopher A1 - Granacher, Urs A1 - Lesinski, Melanie A1 - Schuenemann, C. A1 - Mühlbauer, Thomas T1 - Effects of Complex Versus Block Strength Training on the Athletic Performance of Elite Youth Soccer Players JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Hintergrund: Kraft und Schnelligkeit stellen bedeutsame leistungsdeterminierende Faktoren im Fußball dar. Durch Komplextraining (Kombination aus Kraft- und plyometrischen Übungen in einer Trainingseinheit) lassen sich Kraft- und Schnelligkeitswerte von Athleten steigern. Unklar ist jedoch, ob ein Komplextraining (KT) gegenüber einem herkömmlichen blockweisen Krafttraining (BT) zu größeren sportmotorischen Leistungssteigerungen führt. Das Ziel der Studie war es, die Effekte von KT versus BT auf Variablen der Kraft, Schnelligkeit und Gewandtheit von Nachwuchsleistungsfußballern zu untersuchen. Methode: Zusätzlich zum regulären Fußballtraining (ca. 6 × pro Woche, je 60 – 90 min.) führten 18 männliche Nachwuchsleistungsfußballer über sechs Wochen (2 × pro Woche, je 30 min.) entweder ein progressives KT (n = 10, Alter: 18,5 ± 2,2 Jahre) oder BT (n = 8, Alter: 18,1 ± 1,6 Jahre) durch. Vor und nach dem Training wurden Tests zur Erfassung der Kraft (Einer-Wiederholungs-Maximum [EWM] Kniebeuge), der Sprungkraft (Hockstrecksprung [HSS]), der Schnelligkeit (30-m-Sprint) und der Gewandtheit (T-Test) durchgeführt. Es wurden parameterfreie Verfahren zur Bestimmung von Unterschieden innerhalb (Wilcoxon-Test) und zwischen (Mann-Whitney-U-Test) den beiden Gruppen gerechnet. Ergebnisse: Sowohl KT als auch BT sind sichere (keine trainings- aber sechs spielbedingte Verletzungen) und geeignete (Trainingsteilnahme in KT und BT: ≥ 80 %) Trainingsmaßnahmen in Ergänzung zum regulären Fußballtraining. Die statistische Analyse ergab signifikante Verbesserungen vom Prä- zum Posttest für die KT-Gruppe im EWM (p = 0,043) und im HSS (p = 0,046) sowie für die BT-Gruppe in der Sprintzeit über 5 m (p = 0,039) und 10 m (p = 0,026). Zudem zeigten sich für beide Gruppen signifikante Verbesserungen im T-Test (KT: p = 0,046; BT: p = 0,027). Der Gruppenvergleich (KT vs. BT) über die Zeit (Post- minus Prätest) offenbarte keine bedeutsamen Unterschiede. Schlussfolgerung: Sowohl sechswöchiges KT als auch BT führten zu signifikanten Verbesserungen sportmotorischer Leistungen bei Nachwuchsleistungsfußballern. Allerdings konnten keine zusätzlich leistungssteigernden Effekte von KT im Vergleich zu BT ermittelt werden. In zukünftigen Studien sollte geprüft werden, ob die beobachteten testspezifischen Veränderungen, d. h. Verbesserung der Kraft/Sprungkraft in der KT-Gruppe und Verbesserung der Schnelligkeit in der BT-Gruppe der gewählten Übungsanordnung geschuldet sind oder einen generellen Effekt darstellen. Background: Muscle strength and speed are important determinants of soccer performance. It has previously been shown that complex training (CT, combination of strength and plyometric exercises within a single training session) is effective to enhance strength and speed performance in athletes. However, it is unresolved whether CT is more effective than conventional strength training that is delivered in one single block (BT) to increase proxies of athletic performance. Thus, the aim of the present study was to investigate the effects of CT versus BT on measures of muscle strength/power, speed, and agility in elite youth soccer players. Methods: Eighteen male elite youth soccer players conducted six weeks (2 sessions/week, 30 min, each) of progressive CT (n = 10, age: 18,5 +/- 2.2 years) or BT (n=8, age: 18.1 +/- 1.6 years) in addition to their regular soccer training (approx. 6 sessions/week, 60-90 min, each). Before and after training, tests were conducted for the assessment of strength (one -repetition maximum [1RM] squat), power (countermovement jump [CMJ]), speed (30-m linear sprint), and agility (T test). Non-parametric analyses were used to calculate differences within (Wilcoxon test) and between (Mann-Whitney-U test) groups. Results: Both CT and BT proved to be safe (i.e. no training-related, but six match -related injuries reported) and feasible (i.e. attendance rate of 80% in both groups) training regimens when implemented in addition to regular soccer training. The statistical analysis revealed significant improvements from pre-training to post-training tests for the CT group in 1 RM squat (p =0.043) and CMJ height (p =0,046). For the BT -group, significantly enhanced sprint times were observed over 5 m (p = 0.039) and 10 m (p = 0.026), Furthermore, both groups significantly improved their t test time (CT: p =0.046; BT: p =0.027). However, group comparisons (CT vs. BT) over time (post-training minus pre-training test) did not show any significant differences. Conclusion: Six weeks of CT and BT resulted in significant improvements in proxies of athletic performance. Yet CT did not produce any additional effects compared to BT. Future research is needed to examine whether the observed test-specific changes, i.e. improvements in strength/power for the CT-group and improvements in speed for the BT-group, are due to the applied configuration of strength, plyometric, and sprint exercises or if they rather indicate a general training response. KW - strength training KW - jump/sprint exercises KW - youth athletes Y1 - 2016 U6 - https://doi.org/10.1055/s-0041-106949 SN - 0932-0555 SN - 1439-1236 VL - 30 SP - 31 EP - 37 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background The importance of trunk muscle strength (TMS) for physical fitness and athletic performance has been demonstrated by studies reporting significant correlations between those capacities. However, evidence-based knowledge regarding the magnitude of correlations between TMS and proxies of physical fitness and athletic performance as well as potential effects of core strength training (CST) on TMS, physical fitness and athletic performance variables is currently lacking for trained individuals. Objective The aims of this systematic review and meta-analysis were to quantify associations between variables of TMS, physical fitness and athletic performance and effects of CST on these measures in healthy trained individuals. Data Sources PubMed, Web of Science, and SPORTDiscus were systematically screened from January 1984 to March 2015. Study Eligibility Criteria Studies were included that investigated healthy trained individuals aged 16-44 years and tested at least one measure of TMS, muscle strength, muscle power, balance, and/or athletic performance. Results Small-sized relationships of TMS with physical performance measures (-0.05 <= r <= 0.18) were found in 15 correlation studies. Sixteen intervention studies revealed large effects of CST on measures of TMS (SMD = 1.07) but small-to-medium-sized effects on proxies of physical performance (0 <= SMD <= 0.71) compared with no training or regular training only. The methodological quality of CST studies was low (median PEDro score = 4). Conclusions Our findings indicate that TMS plays only a minor role for physical fitness and athletic performance in trained individuals. In fact, CST appears to be an effective means to increase TMS and was associated with only limited gains in physical fitness and athletic performance measures when compared with no or only regular training. Y1 - 2016 U6 - https://doi.org/10.1007/s40279-015-0426-4 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 401 EP - 419 PB - Springer CY - Northcote ER - TY - GEN A1 - Behm, David George A1 - Mühlbauer, Thomas A1 - Kibele, Armin A1 - Granacher, Urs T1 - Effects of Strength Training Using Unstable Surfaces on Strength, Power and Balance Performance Across the Lifespan: A Systematic Review and Meta-analysis (vol 45, pg 1645, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0497-x SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 451 EP - 451 PB - Springer CY - Northcote ER -