TY - GEN A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r 2) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 666 KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482330 SN - 1866-8364 IS - 666 ER - TY - GEN A1 - Arazi, Hamid A1 - Asadi, Abbas A1 - Khalkhali, Farhood A1 - Boullosa, Daniel A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Association Between the Acute to Chronic Workload Ratio and Injury Occurrence in Young Male Team Soccer Players BT - A Preliminary Study T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - This study aimed to investigate the relationship between the acute to chronic workload ratio (ACWR), based upon participant session rating of perceived exertion (sRPE), using two models [(1) rolling averages (ACWRRA); and (2) exponentially weighted moving averages (ACWREWMA)] and the injury rate in young male team soccer players aged 17.1 ± 0.7 years during a competitive mesocycle. Twenty-two players were enrolled in this study and performed four training sessions per week with 2 days of recovery and 1 match day per week. During each training session and each weekly match, training time and sRPE were recorded. In addition, training impulse (TRIMP), monotony, and strain were subsequently calculated. The rate of injury was recorded for each soccer player over a period of 4 weeks (i.e., 28 days) using a daily questionnaire. The results showed that over the course of the study, the number of non-contact injuries was significantly higher than that for contact injuries (2.5 vs. 0.5, p = 0.01). There were also significant positive correlations between sRPE and training time (r = 0.411, p = 0.039), ACWRRA (r = 0.47, p = 0.049), and ACWREWMA (r = 0.51, p = 0.038). In addition, small-to-medium correlations were detected between ACWR and non-contact injury occurrence (ACWRRA, r = 0.31, p = 0.05; ACWREWMA, r = 0.53, p = 0.03). Explained variance (r²) for non-contact injury was significantly greater using the ACWREWMA model (ranging between 21 and 52%) compared with ACWRRA (ranging between 17 and 39%). In conclusion, the results of this study showed that the ACWREWMA model is more sensitive than ACWRRA to identify non-contact injury occurrence in male team soccer players during a short period in the competitive season. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 644 KW - training load KW - rate of perceived exertion KW - rolling averages KW - weighted moving averages KW - football Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472961 SN - 1866-8364 IS - 644 ER - TY - GEN A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Effects of the barbell load on the acceleration phase during the snatch in Olympic weightlifting T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70–100% of their personal best in the snatch. The load–velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [−0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 681 KW - biomechanics KW - barbell velocity KW - performance KW - training KW - load–velocity relationship Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471599 SN - 1866-8364 IS - 681 ER - TY - JOUR A1 - Gebel, Arnd A1 - Lehmann, Tim A1 - Granacher, Urs T1 - Balance task difficulty affects postural sway and cortical activity in healthy adolescents JF - Experimental brain research N2 - Electroencephalographic (EEG) research indicates changes in adults' low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16-17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands. KW - balance KW - postural control KW - EEG KW - Theta KW - Alpha-2 KW - ICA KW - youth Y1 - 2020 U6 - https://doi.org/10.1007/s00221-020-05810-1 SN - 0014-4819 SN - 1432-1106 VL - 238 IS - 5 SP - 1323 EP - 1333 PB - Springer CY - New York ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Sammoud, Senda A1 - Prieske, Olaf A1 - Moran, Jason A1 - Ramirez-Campillo, Rodrigo A1 - Nejmaoui, Ali A1 - Granacher, Urs T1 - The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players JF - International journal of sports physiology and performance : IJSSP N2 - Purpose: To examine the effects of loaded (LPJT) versus unloaded plyometric jump training (UPJT) programs on measures of muscle power, speed, change of direction (CoD), and kicking-distance performance in prepubertal male soccer players. Methods: Participants (N = 29) were randomly assigned to a LPJT group (n = 13; age = 13.0 [0.7] y) using weighted vests or UPJT group (n = 16; age = 13.0 [0.5] y) using body mass only. Before and after the intervention, tests for the assessment of proxies of muscle power (ie, countermovement jump, standing long jump); speed (ie, 5-, 10-, and 20-m sprint); CoD (ie, Illinois CoD test, modified 505 agility test); and kicking-distance were conducted. Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the LPJT group showed large and very large improvements for 10-m sprint time (effect size [ES] = 2.00) and modified 505 CoD (ES = 2.83) tests, respectively. For the same group, moderate improvements were observed for the Illinois CoD test (ES = 0.61), 5- and 20-m sprint time test (ES = 1.00 for both the tests), countermovement jump test (ES = 1.00), and the maximal kicking-distance test (ES = 0.90). Small enhancements in the standing long jump test (ES = 0.50) were apparent. Regarding the UPJT group, small improvements were observed for all tests (ES = 0.33-0.57), except 5- and 10-m sprint time (ES = 1.00 and 0.63, respectively). Between-group analyses favored the LPJT group for the modified 505 CoD (ES = 0.61), standing long jump (ES = 0.50), and maximal kicking-distance tests (ES = 0.57), but not for the 5-m sprint time test (ES = 1.00). Only trivial between-group differences were shown for the remaining tests (ES = 0.00-0.09). Conclusion: Overall, LPJT appears to be more effective than UPJT in improving measures of muscle power, speed, CoD, and kicking-distance performance in prepubertal male soccer players. KW - young KW - football KW - stretch-shortening cycle KW - maturity KW - athletic KW - performance Y1 - 2020 U6 - https://doi.org/10.1123/ijspp.2018-0866 SN - 1555-0265 SN - 1555-0273 VL - 15 IS - 2 SP - 189 EP - 195 PB - Human Kinetics CY - Champaign, Ill. ER - TY - JOUR A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Effects of the barbell load on the acceleration phase during the snatch in elite Olympic weightlifting JF - Sports N2 - The load-depended loss of vertical barbell velocity at the end of the acceleration phase limits the maximum weight that can be lifted. Thus, the purpose of this study was to analyze how increased barbell loads affect the vertical barbell velocity in the sub-phases of the acceleration phase during the snatch. It was hypothesized that the load-dependent velocity loss at the end of the acceleration phase is primarily associated with a velocity loss during the 1st pull. For this purpose, 14 male elite weightlifters lifted seven load-stages from 70-100% of their personal best in the snatch. The load-velocity relationship was calculated using linear regression analysis to determine the velocity loss at 1st pull, transition, and 2nd pull. A group mean data contrast analysis revealed the highest load-dependent velocity loss for the 1st pull (t = 1.85, p = 0.044, g = 0.49 [-0.05, 1.04]) which confirmed our study hypothesis. In contrast to the group mean data, the individual athlete showed a unique response to increased loads during the acceleration sub-phases of the snatch. With the proposed method, individualized training recommendations on exercise selection and loading schemes can be derived to specifically improve the sub-phases of the snatch acceleration phase. Furthermore, the results highlight the importance of single-subject assessment when working with elite athletes in Olympic weightlifting. KW - biomechanics KW - barbell velocity KW - performance KW - training KW - load-velocity KW - relationship Y1 - 2020 U6 - https://doi.org/10.3390/sports8050059 SN - 2075-4663 VL - 8 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Saidi, Karim A1 - Ben Abderrahman, Abderraouf A1 - Boullosa, Daniel A1 - Dupont, Grégory A1 - Hackney, Anthony C. A1 - Bideau, Benoit A1 - Pavillon, Thomas A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - The Interplay Between Plasma Hormonal Concentrations, Physical Fitness, Workload and Mood State Changes to Periods of Congested Match Play in Professional Soccer Players JF - Frontiers in Physiology N2 - Background: The regular assessment of hormonal and mood state parameters in professional soccer are proposed as good indicators during periods of intense training and/or competition to avoid overtraining. Objective: The aim of this study was to analyze hormonal, psychological, workload and physical fitness parameters in elite soccer players in relation to changes in training and match exposure during a congested period of match play. Methods: Sixteen elite soccer players from a team playing in the first Tunisian soccer league were evaluated three times (T1, T2, and T3) over 12 weeks. The non-congested period of match play was from T1 to T2, when the players played 6 games over 6 weeks. The congested period was from T2 to T3, when the players played 10 games over 6 weeks. From T1 to T3, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). Plasma Cortisol (C), Testosterone (T), and the T/C ratio were analyzed at T1, T2, and T3. Players had their mood dimensions (tension, depression, anger, vigor, fatigue, confusion, and a Total Mood Disturbance) assessed through the Profile of Mood State questionnaire (POMS). Training session rating of perceived exertion (sRPE) was also recorded on a daily basis in order to quantify internal training load and elements of monotony and strain. Results: Significant performance declines (T1 < T2 < T3) were found for SJ performance (p = 0.04, effect size [ES] ES₁₋₂ = 0.15−0.06, ES₂₋₃ = 0.24) from T1 to T3. YYIR1 performance improved significantly from T1 to T2 and declined significantly from T2 to T3 (p = 0.001, ES₁₋₂ = 0.24, ES₂₋₃ = −2.54). Mean RSSA performance was significantly higher (p = 0.019, ES₁₋₂ = −0.47, ES₂₋₃ = 1.15) in T3 compared with T2 and T1. Best RSSA performance was significantly higher in T3 when compared with T2 and T1 (p = 0.006, ES₂₋₃ = 0.47, ES₁₋₂ = −0.56), but significantly lower in T2 when compared with to T1. T and T/C were significantly lower in T3 when compared with T2 and T1 (T: p = 0.03, ES₃₋₂ = −0.51, ES₃₋₁ = −0.51, T/C: p = 0.017, ES₃₋₂ = −1.1, ES₃₋₁ = −1.07). Significant decreases were found for the vigor scores in T3 when compared to T2 and T1 (p = 0.002, ES₁₋₂ = 0.31, ES₃₋₂ = −1.25). A significant increase was found in fatigue scores in T3 as compared to T1 and T2 (p = 0.002, ES₁₋₂ = 0.43, ES₂₋₃ = 0.81). A significant increase was found from T1 < T2 < T3 intension score (p = 0.002, ES₁₋₂ = 1.1, ES₂₋₃ = 0.2) and anger score (p = 0.03, ES₁₋₂ = 0.47, ES₂₋₃ = 0.33) over the study period. Total mood disturbance increased significantly (p = 0.02, ES₁₋₂ = 0.91, ES₂₋₃ = 1.1) from T1 to T3. Between T1-T2, significant relationships were observed between workload and changes in T (r = 0.66, p = 0.003), and T/C ratio (r = 0.62, p = 0.01). There were significant relationships between performance in RSSAbest and training load parameters (workload: r = 0.52, p = 0.03; monotony: r = 0.62, p = 0.01; strain: r = 0.62, p = 0.009). Between T2-T3, there was a significant relationship between Δ% of total mood disturbance and Δ% of YYIR1 (r = −0.54; p = 0.04), RSSAbest (r = 0.58, p = 0.01), SJ (r = −0,55, p = 0.01), T (r = 0.53; p = 0.03), and T/C (r = 0.5; p = 0.04). Conclusion: An intensive period of congested match play significantly compromised elite soccer players’ physical and mental fitness. These changes were related to psychological but not hormonal parameters; even though significant alterations were detected for selected measures. Mood monitoring could be a simple and useful tool to determine the degree of preparedness for match play during a congested period in professional soccer. KW - training KW - hormones KW - overtraining KW - overreaching KW - recovery Y1 - 2020 U6 - https://doi.org/10.3389/fphys.2020.00835 SN - 1664-042X VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Saidi, Karim A1 - Ben Abderrahman, Abderraouf A1 - Boullosa, Daniel A1 - Dupont, Grégory A1 - Hackney, Anthony C. A1 - Bideau, Benoit A1 - Pavillon, Thomas A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - The Interplay Between Plasma Hormonal Concentrations, Physical Fitness, Workload and Mood State Changes to Periods of Congested Match Play in Professional Soccer Players T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: The regular assessment of hormonal and mood state parameters in professional soccer are proposed as good indicators during periods of intense training and/or competition to avoid overtraining. Objective: The aim of this study was to analyze hormonal, psychological, workload and physical fitness parameters in elite soccer players in relation to changes in training and match exposure during a congested period of match play. Methods: Sixteen elite soccer players from a team playing in the first Tunisian soccer league were evaluated three times (T1, T2, and T3) over 12 weeks. The non-congested period of match play was from T1 to T2, when the players played 6 games over 6 weeks. The congested period was from T2 to T3, when the players played 10 games over 6 weeks. From T1 to T3, players performed the Yo-Yo intermittent recovery test level 1 (YYIR1), the repeated shuttle sprint ability test (RSSA), the countermovement jump test (CMJ), and the squat jump test (SJ). Plasma Cortisol (C), Testosterone (T), and the T/C ratio were analyzed at T1, T2, and T3. Players had their mood dimensions (tension, depression, anger, vigor, fatigue, confusion, and a Total Mood Disturbance) assessed through the Profile of Mood State questionnaire (POMS). Training session rating of perceived exertion (sRPE) was also recorded on a daily basis in order to quantify internal training load and elements of monotony and strain. Results: Significant performance declines (T1 < T2 < T3) were found for SJ performance (p = 0.04, effect size [ES] ES₁₋₂ = 0.15−0.06, ES₂₋₃ = 0.24) from T1 to T3. YYIR1 performance improved significantly from T1 to T2 and declined significantly from T2 to T3 (p = 0.001, ES₁₋₂ = 0.24, ES₂₋₃ = −2.54). Mean RSSA performance was significantly higher (p = 0.019, ES₁₋₂ = −0.47, ES₂₋₃ = 1.15) in T3 compared with T2 and T1. Best RSSA performance was significantly higher in T3 when compared with T2 and T1 (p = 0.006, ES₂₋₃ = 0.47, ES₁₋₂ = −0.56), but significantly lower in T2 when compared with to T1. T and T/C were significantly lower in T3 when compared with T2 and T1 (T: p = 0.03, ES₃₋₂ = −0.51, ES₃₋₁ = −0.51, T/C: p = 0.017, ES₃₋₂ = −1.1, ES₃₋₁ = −1.07). Significant decreases were found for the vigor scores in T3 when compared to T2 and T1 (p = 0.002, ES₁₋₂ = 0.31, ES₃₋₂ = −1.25). A significant increase was found in fatigue scores in T3 as compared to T1 and T2 (p = 0.002, ES₁₋₂ = 0.43, ES₂₋₃ = 0.81). A significant increase was found from T1 < T2 < T3 intension score (p = 0.002, ES₁₋₂ = 1.1, ES₂₋₃ = 0.2) and anger score (p = 0.03, ES₁₋₂ = 0.47, ES₂₋₃ = 0.33) over the study period. Total mood disturbance increased significantly (p = 0.02, ES₁₋₂ = 0.91, ES₂₋₃ = 1.1) from T1 to T3. Between T1-T2, significant relationships were observed between workload and changes in T (r = 0.66, p = 0.003), and T/C ratio (r = 0.62, p = 0.01). There were significant relationships between performance in RSSAbest and training load parameters (workload: r = 0.52, p = 0.03; monotony: r = 0.62, p = 0.01; strain: r = 0.62, p = 0.009). Between T2-T3, there was a significant relationship between Δ% of total mood disturbance and Δ% of YYIR1 (r = −0.54; p = 0.04), RSSAbest (r = 0.58, p = 0.01), SJ (r = −0,55, p = 0.01), T (r = 0.53; p = 0.03), and T/C (r = 0.5; p = 0.04). Conclusion: An intensive period of congested match play significantly compromised elite soccer players’ physical and mental fitness. These changes were related to psychological but not hormonal parameters; even though significant alterations were detected for selected measures. Mood monitoring could be a simple and useful tool to determine the degree of preparedness for match play during a congested period in professional soccer. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 660 KW - training KW - hormones KW - overtraining KW - overreaching KW - recovery Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-479259 SN - 1866-8364 IS - 660 ER - TY - GEN A1 - Pavillon, Thomas A1 - Tourny, Claire A1 - Ben Abderrahman, Abderraouf A1 - Salhi, Iyed A1 - Zouita, Sghaeir A1 - Rouissi, Mehdi A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Sprint and jump performances in highly trained young soccer players of different chronological age BT - Effects of linear VS. CHANGE–OF–DIRECTION sprint training T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Objective The aim of this study was to examine the effects of two different sprint-training regimes on sprint and jump performances according to age in elite young male soccer players over the course of one soccer season. Methods Players were randomly assigned to two training groups. Group 1 performed systematic change-of-direction sprints (CODST, U19 [n = 9], U17 [n = 9], U15 [n = 10]) while group 2 conducted systematic linear sprints (LST, U19 [n = 9], U17 [n = 9], U15 [n = 9]). Training volumes were similar between groups (40 sprints per week x 30 weeks = 1200 sprints per season). Pre and post training, all players performed tests for the assessment of linear and slalom sprint speed (5-m and 10-m), countermovement jump, and maximal aerobic speed performance. Results For all physical fitness measures, the baseline-adjusted means data (ANCOVA) across the age groups showed no significant differences between LST and CODST at post (0.061 < p < 0.995; 0.0017 < d < 1.01). The analyses of baseline-adjusted means for all physical fitness measures for U15, U17, and U19 (LST vs. CODST) revealed no significant differences between LST and CODST for U15 (0.213 < p < 0.917; 0.001 < d < 0.087), U17 (0.132 < p < 0.976; 0.001 < d < 0.310), and U19 (0.300 < p < 0.999; 0.001 < d < 0.049) at post. Conclusions The results from this study showed that both, LST and CODST induced significant changes in the sprint, lower limbs power, and aerobic performances in young elite soccer players. Since no significant differences were observed between LST and CODST, the observed changes are most likely due to training and/or maturation. Therefore, more research is needed to elucidate whether CODST, LST or a combination of both is beneficial for youth soccer athletes’ performance development. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 697 KW - Football KW - Repeated sprint KW - Performance KW - Speed Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-490557 SN - 1866-8364 IS - 697 ER - TY - JOUR A1 - Hortobagyi, Tibor A1 - Granacher, Urs A1 - Fernandez-del-Olmo, Miguel A1 - Howatson, Glyn A1 - Manca, Andrea A1 - Deriu, Franca A1 - Taube, Wolfgang A1 - Gruber, Markus A1 - Marquez, Gonzalo A1 - Lundbye-Jensen, Jesper A1 - Colomer-Poveda, David T1 - Functional relevance of resistance training-induced neuroplasticity in health and disease JF - Neuroscience & biobehavioral reviews : official journal of the International Behavioral Neuroscience Society N2 - Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease. KW - Maximal voluntary contraction (MVC) KW - strength training KW - Electromyography (EMG) KW - Transcranial magnetic brain stimulation (TMS) KW - Electroencephalography (EEG) KW - Functional magnetic resonance imaging (fMRI) KW - athletic performance KW - aging KW - Parkinson's disease KW - Multiple sclerosis KW - stroke KW - directed acyclic graphs KW - causal mediation analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.neubiorev.2020.12.019 SN - 0149-7634 SN - 1873-7528 VL - 122 SP - 79 EP - 91 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Pavillon, Thomas A1 - Tourny, Claire A1 - Ben Abderrahman, Abderraouf A1 - Salhi, Iyed A1 - Zouita, Sghaeir A1 - Rouissi, Mehdi A1 - Hackney, Anthony C. A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Sprint and jump performances in highly trained young soccer players of different chronological age BT - Effects of linear VS. CHANGE–OF–DIRECTION sprint training JF - Journal of Exercise Science & Fitness N2 - Objective The aim of this study was to examine the effects of two different sprint-training regimes on sprint and jump performances according to age in elite young male soccer players over the course of one soccer season. Methods Players were randomly assigned to two training groups. Group 1 performed systematic change-of-direction sprints (CODST, U19 [n = 9], U17 [n = 9], U15 [n = 10]) while group 2 conducted systematic linear sprints (LST, U19 [n = 9], U17 [n = 9], U15 [n = 9]). Training volumes were similar between groups (40 sprints per week x 30 weeks = 1200 sprints per season). Pre and post training, all players performed tests for the assessment of linear and slalom sprint speed (5-m and 10-m), countermovement jump, and maximal aerobic speed performance. Results For all physical fitness measures, the baseline-adjusted means data (ANCOVA) across the age groups showed no significant differences between LST and CODST at post (0.061 < p < 0.995; 0.0017 < d < 1.01). The analyses of baseline-adjusted means for all physical fitness measures for U15, U17, and U19 (LST vs. CODST) revealed no significant differences between LST and CODST for U15 (0.213 < p < 0.917; 0.001 < d < 0.087), U17 (0.132 < p < 0.976; 0.001 < d < 0.310), and U19 (0.300 < p < 0.999; 0.001 < d < 0.049) at post. Conclusions The results from this study showed that both, LST and CODST induced significant changes in the sprint, lower limbs power, and aerobic performances in young elite soccer players. Since no significant differences were observed between LST and CODST, the observed changes are most likely due to training and/or maturation. Therefore, more research is needed to elucidate whether CODST, LST or a combination of both is beneficial for youth soccer athletes’ performance development. KW - Football KW - Repeated sprint KW - Performance KW - Speed Y1 - 2020 U6 - https://doi.org/10.1016/j.jesf.2020.10.003 SN - 1728-869x VL - 19 IS - 2 SP - 81 EP - 90 PB - Elsevier CY - Singapore ER - TY - JOUR A1 - Lesinski, Melanie A1 - Schmelcher, Alina A1 - Herz, Michael A1 - Puta, Christian A1 - Gabriel, Holger A1 - Arampatzis, Adamantios A1 - Laube, Gunnar A1 - Büsch, Dirk A1 - Granacher, Urs T1 - Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes JF - Plos One N2 - The aim of this study was to establish maturation-, age-, and sex-specific anthropometric and physical fitness percentile reference values of young elite athletes from various sports. Anthropometric (i.e., standing and sitting body height, body mass, body mass index) and physical fitness (i.e., countermovement jump, drop jump, change-of-direction speed [i.e., T-test], trunk muscle endurance [i.e., ventral Bourban test], dynamic lower limbs balance [i.e., Y-balance test], hand grip strength) of 703 male and female elite young athletes aged 8–18 years were collected to aggregate reference values according to maturation, age, and sex. Findings indicate that body height and mass were significantly higher (p<0.001; 0.95≤d≤1.74) in more compared to less mature young athletes as well as with increasing chronological age (p<0.05; 0.66≤d≤3.13). Furthermore, male young athletes were significantly taller and heavier compared to their female counterparts (p<0.001; 0.34≤d≤0.50). In terms of physical fitness, post-pubertal athletes showed better countermovement jump, drop jump, change-of-direction, and handgrip strength performances (p<0.001; 1.57≤d≤8.72) compared to pubertal athletes. Further, countermovement jump, drop jump, change-of-direction, and handgrip strength performances increased with increasing chronological age (p<0.05; 0.29≤d≤4.13). In addition, male athletes outperformed their female counterpart in the countermovement jump, drop jump, change-of-direction, and handgrip strength (p<0.05; 0.17≤d≤0.76). Significant age by sex interactions indicate that sex-specific differences were even more pronounced with increasing age. Conclusively, body height, body mass, and physical fitness increased with increasing maturational status and chronological age. Sex-specific differences appear to be larger as youth grow older. Practitioners can use the percentile values as approximate benchmarks for talent identification and development. KW - biological maturation KW - reliability KW - validity KW - performance KW - physiology KW - maturity KW - injury KW - talent Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0237423 SN - 1932-6203 VL - 15 IS - 8 PB - Plos One CY - San Francisco, California ER - TY - JOUR A1 - Granacher, Urs A1 - Nobari, Hadi A1 - Ruivo Alves, Ana A1 - Clemente, Filipe Manuel A1 - Pérez-Gómez, Jorge A1 - Clark, Cain Craig Truman A1 - Zouhal, Hassane T1 - Associations Between Variations in Accumulated Workload and Physiological Variables in Young Male Soccer Players Over the Course of a Season JF - Frontiers in physiology N2 - This study sought to analyze the relationship between in-season training workload with changes in aerobic power (VO2max), maximum and resting heart rate (HRmax and HRrest), linear sprint medium (LSM), and short test (LSS), in soccer players younger than 16 years (under-16 soccer players). We additionally aimed to explain changes in fitness levels during the in-season through regression models, considering accumulated load, baseline levels, and peak height velocity (PHV) as predictors. Twenty-three male sub-elite soccer players aged 15.5 ± 0.2 years (PHV: 13.6 ± 0.4 years; body height: 172.7 ± 4.2 cm; body mass: 61.3 ± 5.6 kg; body fat: 13.7% ± 3.9%; VO2max: 48.4 ± 2.6 mL⋅kg–1⋅min–1), were tested three times across the season (i.e., early-season (EaS), mid-season (MiS), and end-season (EnS) for VO2max, HRmax, LSM, and LSS. Aerobic and speed variables gradually improved over the season and had a strong association with PHV. Moreover, the HRmax demonstrated improvements from EaS to EnS; however, this was more evident in the intermediate period (from EaS to MiS) and had a strong association with VO2max. Regression analysis showed significant predictions for VO2max [F(2, 20) = 8.18, p ≤ 0.001] with an R2 of 0.45. In conclusion, the meaningful variation of youth players’ fitness levels can be observed across the season, and such changes can be partially explained by the load imposed. KW - internal load KW - heart rate KW - linear sprint KW - aerobic power KW - football Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.638180 SN - 1664-042X VL - 12 SP - 1 EP - 12 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Azadian, Elaheh A1 - Majlesi, Mahdi A1 - Jafarnezhadgero, Amir Ali A1 - Granacher, Urs T1 - The impact of hearing loss on three-dimensional lower limb joint torques during walking in prepubertal boys JF - Journal of bodywork and movement therapies N2 - Introduction: In children, the impact of hearing loss on biomechanical gait parameters is not well understood. Thus, the objectives of this study were to examine three-dimensional lower limb joint torques in deaf compared to age-matched healthy (hearing) children while walking at preferred gait speed. Methods: Thirty prepubertal boys aged 8-14 were enrolled in this study and divided into a group with hearing loss (deaf group) and an age-matched healthy control. Three-dimensional joint torques were analyzed during barefoot walking at preferred speed using Kistler force plates and a Vicon motion capture system. Results: Findings revealed that boys with hearing loss showed lower joint torques in ankle evertors, knee flexors, abductors and internal rotators as well as in hip internal rotators in both, the dominant and non-dominant lower limbs (all p < 0.05; d = 1.23-7.00; 14-79%). Further, in the dominant limb, larger peak ankle dorsiflexor (p < 0.001; d = 1.83; 129%), knee adductor (p < 0.001; d = 3.20; 800%), and hip adductor torques (p < 0.001; d = 2.62; 350%) were found in deaf participants compared with controls. Conclusion: The observed altered lower limb torques during walking are indicative of unstable gait in children with hearing loss. More research is needed to elucidate whether physical training (e.g., balance and/or gait training) has the potential to improve walking performance in this patient group. (C) 2019 Elsevier Ltd. All rights reserved. KW - torque KW - hearing loss KW - gait KW - dominant limb KW - non-dominant limb Y1 - 2020 U6 - https://doi.org/10.1016/j.jbmt.2019.10.013 SN - 1360-8592 SN - 1532-9283 VL - 24 IS - 2 SP - 123 EP - 129 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Moran, Jason A1 - Paxton, Kevin A1 - Jones, Ben A1 - Granacher, Urs A1 - Sandercock, Gavin Rh A1 - Hope, Edward A1 - Ramirez-Campillo, Rodrigo T1 - Variable long-term developmental trajectories of short sprint speed and jumping height in English Premier League academy soccer players: an applied case study JF - Journal of sports sciences N2 - Growth and maturation affect long term physical performance, making the appraisal of athletic ability difficult. We sought to longitudinally track youth soccer players to assess the developmental trajectory of athletic performance over a 6-year period in an English Premier League academy. Age-specific z-scores were calculated for sprint and jump performance from a sample of male youth soccer players (n = 140). A case study approach was used to analyse the longitudinal curves of the six players with the longest tenure. The trajectories of the sprint times of players 1 and 3 were characterised by a marked difference in respective performance levels up until peak height velocity (PHV) when player 1 achieved a substantial increase in sprint speed and player 3 experienced a large decrease. Player 5 was consistently a better performer than player 2 until PHV when the sprint and jump performance of the former markedly decreased and he was overtaken by the latter. Fluctuations in players' physical performance can occur quickly and in drastic fashion. Coaches must be aware that suppressed, or inflated, performance could be temporary and selection and deselection decisions should not be made based on information gathered over a short time period. KW - youth KW - football KW - talent KW - running velocity KW - muscular power Y1 - 2020 U6 - https://doi.org/10.1080/02640414.2020.1792689 SN - 0264-0414 SN - 1466-447X VL - 38 IS - 22 SP - 2525 EP - 2531 PB - Routledge, Taylor & Francis Group CY - London ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Anvari, Maryam A1 - Granacher, Urs T1 - Long-term effects of shoe mileage on ground reaction forces and lower limb muscle activities during walking in individuals with genu varus JF - Clinical biomechanics N2 - Background: Shoe mileage is an important factor that may influence the risk of sustaining injuries during walking. The aims of this study were to examine the effects of shoe mileage on ground reaction forces and activity of lower limb muscles during walking in genu varus individuals compared with controls. Methods: Fifteen healthy and 15 genu varus females received a new pair of running shoes. They were asked to wear these shoes over 6 months. Pre and post intervention, mechanical shoe testing was conducted and ground reaction forces and muscle activities of the right leg were recorded during walking at preferred gait speed. Findings: Significant group-by-time interactions were found for shoe stiffness, antero-posterior and vertical impact peak. We observed higher shoe stiffness and lower impact peaks after intervention in both groups with larger effect sizes in genu varus. Significant group-by-time interactions were identified for vastus medialis (loading phase) and rectus femoris (loading and push-off). For vastus medialis, significant decreases were found from pre-to-post during the loading phase in the control group. Rectus femoris activity was higher post intervention during the loading and push-off phases in both groups with larger effect sizes in genu varus. Interpretation: Our findings indicate that the observed changes in ground reaction forces are more prominent in genu varus individuals. Together with our findings on shoe stiffness, it seems appropriate to change running shoes after an intense wearing time of 6 months, particularly in genu varus individuals. KW - footwear KW - electromyography KW - loading rate KW - patients Y1 - 2020 U6 - https://doi.org/10.1016/j.clinbiomech.2020.01.006 SN - 0268-0033 SN - 1879-1271 VL - 73 SP - 55 EP - 62 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Moran, Jason A1 - Negra, Yassine A1 - Attia, Ahmed A1 - Granacher, Urs T1 - Effects of resistance training on Change-of-Direction speed in youth and young physically active and athletic adults: a systematic review with meta-analysis JF - Sports medicine : the world's premier sports medicine preview journal N2 - Background Change-of-direction (CoD) speed is a physical fitness attribute in many field-based team and individual sports. To date, no systematic review with meta-analysis available has examined the effects of resistance training (RT) on CoD speed in youth and adults. Objective To aggregate the effects of RT on CoD speed in youth and young physically active and athletic adults, and to identify the key RT programme variables for training prescription. Data sources A systematic literature search was conducted with PubMed, Web of Science, and Google Scholar, with no date restrictions, up to October 2019, to identify studies related to the effects of RT on CoD speed. Study Eligibility Criteria Only controlled studies with baseline and follow-up measures were included if they examined the effects of RT (i.e., muscle actions against external resistances) on CoD speed in healthy youth (8-18 years) and young physically active/athletic male or female adults (19-28 years). Study Appraisal and Synthesis Methods A random-effects model was used to calculate weighted standardised mean differences (SMD) between intervention and control groups. In addition, an independent single training factor analysis (i.e., RT frequency, intensity, volume) was undertaken. Further, to verify if any RT variable moderated effects on CoD speed, a multivariate random-effects meta-regression was conducted. The methodological quality of the included studies was assessed using the physiotherapy evidence database (PEDro) scale. Results Fifteen studies, comprising 19 experimental groups, were included. The methodological quality of the studies was acceptable with a median PEDro score of 6. There was a significant large effect size of RT on CoD speed across all studies (SMD = - 0.82 [- 1.14 to - 0.49]). Subgroup analyses showed large effect sizes on CoD speed in males (SMD = - 0.95) contrasting with moderate improvements in females (SMD = - 0.60). There were large effect sizes on CoD speed in children (SMD = - 1.28) and adolescents (SMD = - 1.21) contrasting with moderate effects in adults (SMD = - 0.63). There was a moderate effect in elite athletes (SMD = - 0.69) contrasting with a large effect in subelite athletes (SMD = - 0.86). Differences between subgroups were not statistically significant. Similar improvements were observed regarding the effects of independently computed training variables. In terms of RT frequency, our results indicated that two sessions per week induced large effects on CoD speed (SMD = - 1.07) while programmes with three sessions resulted in moderate effects (SMD = - 0.53). For total training intervention duration, we observed large effects for <= 8 weeks (SMD = - 0.81) and > 8 weeks (SMD = - 0.85). For single session duration, we found large effects for <= 30 min and >= 45 min (both SMD = - 1.00). In terms of number of training sessions, we identified large effects for <= 16 sessions (SMD = - 0.83) and > 16 sessions (SMD = - 0.81). For training intensity, we found moderate effects for light-to-moderate (SMD = - 0.76) and vigorous-to-near maximal intensities (SMD = - 0.77). With regards to RT type, we observed large effects for free weights (SMD = - 0.99) and machine-based training (SMD = - 0.80). For combined free weights and machine-based training, moderate effects were identified (SMD = - 0.77). The meta-regression outcomes showed that none of the included training variables significantly predicted the effects of RT on CoD speed (R-2 = 0.00). Conclusions RT seems to be an effective means to improve CoD speed in youth and young physically active and athletic adults. Our findings indicate that the impact of RT on CoD speed may be more prominent in males than in females and in youth than in adults. Additionally, independently computed single factor analyses for different training variables showed that higher compared with lower RT intensities, frequencies, and volumes appear not to have an advantage on the magnitude of CoD speed improvements. In terms of RT type, similar improvements were observed following machine-based and free weights training. Y1 - 2020 U6 - https://doi.org/10.1007/s40279-020-01293-w SN - 0112-1642 SN - 1179-2035 VL - 50 IS - 8 SP - 1483 EP - 1499 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Prieske, Olaf A1 - Behrens, Martin A1 - Chaabene, Helmi A1 - Granacher, Urs A1 - Maffiuletti, Nicola A. T1 - Time to differentiate postactivation "potentiation" from "performance enhancement" in the strength and conditioning community JF - Sports medicine : the world's premier sports medicine preview journal N2 - Coaches and athletes in elite sports are constantly seeking to use innovative and advanced training strategies to efficiently improve strength/power performance in already highly-trained individuals. In this regard, high-intensity conditioning contractions have become a popular means to induce acute improvements primarily in muscle contractile properties, which are supposed to translate to subsequent power performances. This performance-enhancing physiological mechanism has previously been called postactivation potentiation (PAP). However, in contrast to the traditional mechanistic understanding of PAP that is based on electrically-evoked twitch properties, an increasing number of studies used the term PAP while referring to acute performance enhancements, even if physiological measures of PAP were not directly assessed. In this current opinion article, we compare the two main approaches (i.e., mechanistic vs. performance) used in the literature to describe PAP effects. We additionally discuss potential misconceptions in the general use of the term PAP. Studies showed that mechanistic and performance-related PAP approaches have different characteristics in terms of the applied research field (basic vs. applied), effective conditioning contractions (e.g., stimulated vs. voluntary), verification (lab-based vs. field tests), effects (twitch peak force vs. maximal voluntary strength), occurrence (consistent vs. inconsistent), and time course (largest effect immediately after vs. similar to 7 min after the conditioning contraction). Moreover, cross-sectional studies revealed inconsistent and trivial-to-large-sized associations between selected measures of mechanistic (e.g., twitch peak force) vs. performance-related PAP approaches (e.g., jump height). In an attempt to avoid misconceptions related to the two different PAP approaches, we propose to use two different terms. Postactivation potentiation should only be used to indicate the increase in muscular force/torque production during an electrically-evoked twitch. In contrast, postactivation performance enhancement (PAPE) should be used to refer to the enhancement of measures of maximal strength, power, and speed following conditioning contractions. The implementation of this terminology would help to better differentiate between mechanistic and performance-related PAP approaches. This is important from a physiological point of view, but also when it comes to aggregating findings from PAP studies, e.g., in the form of meta-analyses, and translating these findings to the field of strength and conditioning. Y1 - 2020 U6 - https://doi.org/10.1007/s40279-020-01300-0 SN - 0112-1642 SN - 1179-2035 VL - 50 IS - 9 SP - 1559 EP - 1565 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Fühner, Thea Heidi A1 - Kliegl, Reinhold A1 - Arntz, Fabian A1 - Kriemler, Susi A1 - Granacher, Urs T1 - An update on secular trends in physical fitness of children and adolescents from 1972 to 2015 BT - a systematic review JF - Sports medicine N2 - Background There is evidence that physical fitness of children and adolescents (particularly cardiorespiratory endurance) has declined globally over the past decades. Ever since the first reports on negative trends in physical fitness, efforts have been undertaken by for instance the World Health Organization (WHO) to promote physical activity and fitness in children and adolescents. Therefore, it is timely to re-analyze the literature to examine whether previous reports on secular declines in physical fitness are still detectable or whether they need to be updated. Objectives The objective of this systematic review is to provide an 'update' on secular trends in selected components of physical fitness (i.e., cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed) in children and adolescents aged 6-18 years. Data Sources A systematic computerized literature search was conducted in the electronic databases PubMed and Web of Science to locate studies that explicitly reported secular trends in physical fitness of children and adolescents. Study Eligibility Criteria Studies were included in this systematic review if they examined secular trends between at least two time points across a minimum of 5 years. In addition, they had to document secular trends in any measure of cardiorespiratory endurance, relative muscle strength, proxies of muscle power or speed in apparently healthy children and adolescents aged 6-18 years. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: nation, physical fitness component (cardiorespiratory endurance, relative muscle strength, proxies of muscle power, speed), chronological age, sex (boys vs. girls), and year of assessment. Scores were standardized (i.e., converted to z scores) with sample-weighted means and standard deviations, pooled across sex and year of assessment within cells defined by study, test, and children's age. Results The original search identified 524 hits. In the end, 22 studies met the inclusion criteria for review. The observation period was between 1972 and 2015. Fifteen of the 22 studies used tests for cardiorespiratory endurance, eight for relative muscle strength, eleven for proxies of muscle power, and eight for speed. Measures of cardiorespiratory endurance exhibited a large initial increase and an equally large subsequent decrease, but the decrease appears to have reached a floor for all children between 2010 and 2015. Measures of relative muscle strength showed a general trend towards a small increase. Measures of proxies of muscle power indicated an overall small negative quadratic trend. For measures of speed, a small-to-medium increase was observed in recent years. Limitations Biological maturity was not considered in the analysis because biological maturity was not reported in most included studies. Conclusions Negative secular trends were particularly found for cardiorespiratory endurance between 1986 and 2010-12, irrespective of sex. Relative muscle strength and speed showed small increases while proxies of muscle power declined. Although the negative trend in cardiorespiratory endurance appears to have reached a floor in recent years, because of its association with markers of health, we recommend further initiatives in PA and fitness promotion for children and adolescents. More specifically, public health efforts should focus on exercise that increases cardiorespiratory endurance to prevent adverse health effects (i.e.
, overweight and obesity) and muscle strength to lay a foundation for motor skill learning. Y1 - 2020 U6 - https://doi.org/10.1007/s40279-020-01373-x SN - 0112-1642 SN - 1179-2035 VL - 51 IS - 2 SP - 303 EP - 320 PB - Springer CY - Northcote ER - TY - GEN A1 - Zhou, Lin A1 - Fischer, Eric A1 - Tunca, Can A1 - Brahms, Clemens Markus A1 - Ersoy, Cem A1 - Granacher, Urs A1 - Arnrich, Bert T1 - How We Found Our IMU BT - Guidelines to IMU Selection and a Comparison of Seven IMUs for Pervasive Healthcare Applications T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Inertial measurement units (IMUs) are commonly used for localization or movement tracking in pervasive healthcare-related studies, and gait analysis is one of the most often studied topics using IMUs. The increasing variety of commercially available IMU devices offers convenience by combining the sensor modalities and simplifies the data collection procedures. However, selecting the most suitable IMU device for a certain use case is increasingly challenging. In this study, guidelines for IMU selection are proposed. In particular, seven IMUs were compared in terms of their specifications, data collection procedures, and raw data quality. Data collected from the IMUs were then analyzed by a gait analysis algorithm. The difference in accuracy of the calculated gait parameters between the IMUs could be used to retrace the issues in raw data, such as acceleration range or sensor calibration. Based on our algorithm, we were able to identify the best-suited IMUs for our needs. This study provides an overview of how to select the IMUs based on the area of study with concrete examples, and gives insights into the features of seven commercial IMUs using real data. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 2 KW - inertial measurement unit KW - pervasive healthcare KW - gait analysis KW - comparison of devices Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-481628 IS - 2 ER - TY - GEN A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 3 KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484130 IS - 3 ER - TY - JOUR A1 - Albert, Justin Amadeus A1 - Owolabi, Victor A1 - Gebel, Arnd A1 - Brahms, Clemens Markus A1 - Granacher, Urs A1 - Arnrich, Bert T1 - Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard BT - A Pilot Study JF - Sensors N2 - Gait analysis is an important tool for the early detection of neurological diseases and for the assessment of risk of falling in elderly people. The availability of low-cost camera hardware on the market today and recent advances in Machine Learning enable a wide range of clinical and health-related applications, such as patient monitoring or exercise recognition at home. In this study, we evaluated the motion tracking performance of the latest generation of the Microsoft Kinect camera, Azure Kinect, compared to its predecessor Kinect v2 in terms of treadmill walking using a gold standard Vicon multi-camera motion capturing system and the 39 marker Plug-in Gait model. Five young and healthy subjects walked on a treadmill at three different velocities while data were recorded simultaneously with all three camera systems. An easy-to-administer camera calibration method developed here was used to spatially align the 3D skeleton data from both Kinect cameras and the Vicon system. With this calibration, the spatial agreement of joint positions between the two Kinect cameras and the reference system was evaluated. In addition, we compared the accuracy of certain spatio-temporal gait parameters, i.e., step length, step time, step width, and stride time calculated from the Kinect data, with the gold standard system. Our results showed that the improved hardware and the motion tracking algorithm of the Azure Kinect camera led to a significantly higher accuracy of the spatial gait parameters than the predecessor Kinect v2, while no significant differences were found between the temporal parameters. Furthermore, we explain in detail how this experimental setup could be used to continuously monitor the progress during gait rehabilitation in older people. KW - motion capture KW - evaluation KW - human motion KW - RGB-D cameras KW - digital health Y1 - 2020 U6 - https://doi.org/10.3390/s20185104 SN - 1424-8220 VL - 20 IS - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zhou, Lin A1 - Fischer, Eric A1 - Tunca, Can A1 - Brahms, Clemens Markus A1 - Ersoy, Cem A1 - Granacher, Urs A1 - Arnrich, Bert T1 - How We Found Our IMU BT - Guidelines to IMU Selection and a Comparison of Seven IMUs for Pervasive Healthcare Applications JF - Sensors N2 - Inertial measurement units (IMUs) are commonly used for localization or movement tracking in pervasive healthcare-related studies, and gait analysis is one of the most often studied topics using IMUs. The increasing variety of commercially available IMU devices offers convenience by combining the sensor modalities and simplifies the data collection procedures. However, selecting the most suitable IMU device for a certain use case is increasingly challenging. In this study, guidelines for IMU selection are proposed. In particular, seven IMUs were compared in terms of their specifications, data collection procedures, and raw data quality. Data collected from the IMUs were then analyzed by a gait analysis algorithm. The difference in accuracy of the calculated gait parameters between the IMUs could be used to retrace the issues in raw data, such as acceleration range or sensor calibration. Based on our algorithm, we were able to identify the best-suited IMUs for our needs. This study provides an overview of how to select the IMUs based on the area of study with concrete examples, and gives insights into the features of seven commercial IMUs using real data. KW - inertial measurement unit KW - pervasive healthcare KW - gait analysis KW - comparison of devices Y1 - 2020 U6 - https://doi.org/10.3390/s20154090 SN - 1424-8220 VL - 20 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Zghal, Firas A1 - Colson, Serge S. A1 - Blain, Grégory A1 - Behm, David George A1 - Granacher, Urs A1 - Chaouachi, Anis T1 - Combined Resistance and Plyometric Training Is More Effective Than Plyometric Training Alone for Improving Physical Fitness of Pubertal Soccer Players JF - frontiers in Physiology N2 - The purpose of this study was to compare the effects of combined resistance and plyometric/sprint training with plyometric/sprint training or typical soccer training alone on muscle strength and power, speed, change-of-direction ability in young soccer players. Thirty-one young (14.5 ± 0.52 years; tanner stage 3–4) soccer players were randomly assigned to either a combined- (COMB, n = 14), plyometric-training (PLYO, n = 9) or an active control group (CONT, n = 8). Two training sessions were added to the regular soccer training consisting of one session of light-load high-velocity resistance exercises combined with one session of plyometric/sprint training (COMB), two sessions of plyometric/sprint training (PLYO) or two soccer training sessions (CONT). Training volume was similar between the experimental groups. Before and after 7-weeks of training, peak torque, as well as absolute and relative (normalized to torque; RTDr) rate of torque development (RTD) during maximal voluntary isometric contraction of the knee extensors (KE) were monitored at time intervals from the onset of contraction to 200 ms. Jump height, sprinting speed at 5, 10, 20-m and change-of-direction ability performances were also assessed. There were no significant between–group baseline differences. Both COMB and PLYO significantly increased their jump height (Δ14.3%; ES = 0.94; Δ12.1%; ES = 0.54, respectively) and RTD at mid to late phases but with greater within effect sizes in COMB in comparison with PLYO. However, significant increases in peak torque (Δ16.9%; p < 0.001; ES = 0.58), RTD (Δ44.3%; ES = 0.71), RTDr (Δ27.3%; ES = 0.62) and sprint performance at 5-m (Δ-4.7%; p < 0.001; ES = 0.73) were found in COMB without any significant pre-to-post change in PLYO and CONT groups. Our results suggest that COMB is more effective than PLYO or CONT for enhancing strength, sprint and jump performances. KW - strength KW - power KW - rate of torque development KW - jumping KW - running Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.01026 SN - 1664-042X VL - 10 IS - August 2019 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Prieske, Olaf A1 - Dalager, Tina A1 - Herz, Michael A1 - Hortobagyi, Tibor A1 - Sjogaard, Gisela A1 - Sogaard, Karen A1 - Granacher, Urs T1 - Effects of Physical Exercise Training in the Workplace on Physical Fitness: A Systematic Review and Meta-analysis JF - Sports medicine N2 - Background There is evidence that physical exercise training (PET) conducted at the workplace is effective in improving physical fitness and thus health. However, there is no current systematic review available that provides high-level evidence regarding the effects of PET on physical fitness in the workforce. Objectives To quantify sex-, age-, and occupation type-specific effects of PET on physical fitness and to characterize dose-response relationships of PET modalities that could maximize gains in physical fitness in the working population. Data Sources A computerized systematic literature search was conducted in the databases PubMed and Cochrane Library (2000-2019) to identify articles related to PET in workers. Study Eligibility Criteria Only randomized controlled trials with a passive control group were included if they investigated the effects of PET programs in workers and tested at least one fitness measure. Study Appraisal and Synthesis Methods Weighted mean standardised mean differences (SMDwm) were calculated using random effects models. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (e.g., training frequency, session duration, intensity) on the effectiveness of PET on measures of physical fitness. Further, subgroup univariate analyses were computed for each training modality. Additionally, methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, 3423 workers aged 30-56 years participated in 17 studies (19 articles) that were eligible for inclusion. Methodological quality of the included studies was moderate with a median PEDro score of 6. Our analyses revealed significant, small-sized effects of PET on cardiorespiratory fitness (CRF), muscular endurance, and muscle power (0.29 <= SMDwm <= 0.48). Medium effects were found for CRF and muscular endurance in younger workers (<= 45 years) (SMDwm = 0.71) and white-collar workers (SMDwm = 0.60), respectively. Multivariate random effects meta-regression for CRF revealed that none of the examined training modalities predicted the effects of PET on CRF (R-2 = 0). Independently computed subgroup analyses showed significant PET effects on CRF when conducted for 9-12 weeks (SMDwm = 0.31) and for 17-20 weeks (SMDwm = 0.74). Conclusions PET effects on physical fitness in healthy workers are moderated by age (CRF) and occupation type (muscular endurance). Further, independently computed subgroup analyses indicated that the training period of the PET programs may play an important role in improving CRF in workers. Y1 - 2019 U6 - https://doi.org/10.1007/s40279-019-01179-6 SN - 0112-1642 SN - 1179-2035 VL - 49 IS - 12 SP - 1903 EP - 1921 PB - Springer CY - Northcote ER - TY - GEN A1 - Zinke, Fridolin A1 - Warnke, Torsten A1 - Gäbler, Martijn A1 - Granacher, Urs T1 - Effects of Isokinetic Training on Trunk Muscle Fitness and Body Composition in World-Class Canoe Sprinters T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - In canoe sprint, the trunk muscles play an important role in stabilizing the body in an unstable environment (boat) and in generating forces that are transmitted through the shoulders and arms to the paddle for propulsion of the boat. Isokinetic training is well suited for sports in which propulsion is generated through water resistance due to similarities in the resistive mode. Thus, the purpose of this study was to determine the effects of isokinetic training in addition to regular sport-specific training on trunk muscular fitness and body composition in world-class canoeists and to evaluate associations between trunk muscular fitness and canoe-specific performance. Nine world-class canoeists (age: 25.6 ± 3.3 years; three females; four world champions; three Olympic gold medalists) participated in an 8-week progressive isokinetic training with a 6-week block “muscle hypertrophy” and a 2-week block “muscle power.” Pre- and post-tests included the assessment of peak isokinetic torque at different velocities in concentric (30 and 140∘s-1) and eccentric (30 and 90∘s-1) mode, trunk muscle endurance, and body composition (e.g., body fat, segmental lean mass). Additionally, peak paddle force was assessed in the flume at a water current of 3.4 m/s. Significant pre-to-post increases were found for peak torque of the trunk rotators at 30∘s-1 (p = 0.047; d = 0.4) and 140∘s-1 (p = 0.014; d = 0.7) in concentric mode. No significant pre-to-post changes were detected for eccentric trunk rotator torque, trunk muscle endurance, and body composition (p > 0.148). Significant medium-to-large correlations were observed between concentric trunk rotator torque but not trunk muscle endurance and peak paddle force, irrespective of the isokinetic movement velocity (all r ≥ 0.886; p ≤ 0.008). Isokinetic trunk rotator training is effective in improving concentric trunk rotator strength in world-class canoe sprinters. It is recommended to progressively increase angular velocity from 30∘s-1 to 140∘s-1 over the course of the training period. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 536 KW - peak torque KW - canoe racing KW - core strength KW - sport-specific performance KW - elite athletes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424898 SN - 1866-8364 IS - 536 ER - TY - GEN A1 - Peitz, Matti A1 - Behringer, Michael A1 - Granacher, Urs T1 - A systematic review on the effects of resistance and plyometric training on physical fitness in youth BT - What do comparative studies tell us? T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Introduction To date, several meta-analyses clearly demonstrated that resistance and plyometric training are effective to improve physical fitness in children and adolescents. However, a methodological limitation of meta-analyses is that they synthesize results from different studies and hence ignore important differences across studies (i.e., mixing apples and oranges). Therefore, we aimed at examining comparative intervention studies that assessed the effects of age, sex, maturation, and resistance or plyometric training descriptors (e.g., training intensity, volume etc.) on measures of physical fitness while holding other variables constant. Methods To identify relevant studies, we systematically searched multiple electronic databases (e.g., PubMed) from inception to March 2018. We included resistance and plyometric training studies in healthy young athletes and non-athletes aged 6 to 18 years that investigated the effects of moderator variables (e.g., age, maturity, sex, etc.) on components of physical fitness (i.e., muscle strength and power). Results Our systematic literature search revealed a total of 75 eligible resistance and plyometric training studies, including 5,138 participants. Mean duration of resistance and plyometric training programs amounted to 8.9 ± 3.6 weeks and 7.1±1.4 weeks, respectively. Our findings showed that maturation affects plyometric and resistance training outcomes differently, with the former eliciting greater adaptations pre-peak height velocity (PHV) and the latter around- and post-PHV. Sex has no major impact on resistance training related outcomes (e.g., maximal strength, 10 repetition maximum). In terms of plyometric training, around-PHV boys appear to respond with larger performance improvements (e.g., jump height, jump distance) compared with girls. Different types of resistance training (e.g., body weight, free weights) are effective in improving measures of muscle strength (e.g., maximum voluntary contraction) in untrained children and adolescents. Effects of plyometric training in untrained youth primarily follow the principle of training specificity. Despite the fact that only 6 out of 75 comparative studies investigated resistance or plyometric training in trained individuals, positive effects were reported in all 6 studies (e.g., maximum strength and vertical jump height, respectively). Conclusions The present review article identified research gaps (e.g., training descriptors, modern alternative training modalities) that should be addressed in future comparative studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 498 KW - young soccer players KW - randomized controlled-trial KW - school baseball players KW - whole-body vibratoin KW - rugby league players KW - of-direction speed KW - endurance performance KW - muscular strength KW - motor-performance Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-422201 SN - 1866-8364 IS - 498 ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Fatollahi, Amir A1 - Amirzadeh, Nasrin A1 - Siahkouhian, Marefat A1 - Granacher, Urs T1 - Ground Reaction Forces and Muscle Activity While Walking on Sand versus Stable Ground in Individuals with Pronated Feet Compared with Healthy Controls T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background Sand is an easy-to-access, cost-free resource that can be used to treat pronated feet (PF). Therefore, the aims of this study were to contrast the effects of walking on stable ground versus walking on sand on ground reaction forces (GRFs) and electromyographic (EMG) activity of selected lower limb muscles in PF individuals compared with healthy controls. Methods Twenty-nine controls aged 22.2±2.5 years and 30 PF individuals aged 22.2±1.9 years were enrolled in this study. Participants walked at preferred speed and in randomized order over level ground and sand. A force plate was included in the walkway to collect GRFs. Muscle activities were recorded using EMG system. Results No statistically significant between-group differences were found in preferred walking speed when walking on stable ground (PF: 1.33±0.12 m/s; controls: 1.35±0.14 m/s; p = 0.575; d = 0.15) and sand (PF: 1.19±0.11 m/s; controls: 1.23±0.18 m/s; p = 0.416; d = 0.27). Irrespective of the group, walking on sand (1.21±0.15 m/s) resulted in significantly lower gait speed compared with stable ground walking (1.34±0.13 m/s) (p<0.001; d = 0.93). Significant main effects of “surface” were found for peak posterior GRFs at heel contact, time to peak for peak lateral GRFs at heel contact, and peak anterior GRFs during push-off (p<0.044; d = 0.27–0.94). Pair-wise comparisons revealed significantly smaller peak posterior GRFs at heel contact (p = 0.005; d = 1.17), smaller peak anterior GRFs during push-off (p = 0.001; d = 1.14), and time to peak for peak lateral GRFs (p = 0.044; d = 0.28) when walking on sand. No significant main effects of “group” were observed for peak GRFs and their time to peak (p>0.05; d = 0.06–1.60). We could not find any significant group by surface interactions for peak GRFs and their time to peak. Significant main effects of “surface” were detected for anterior-posterior impulse and peak positive free moment amplitude (p<0.048; d = 0.54–0.71). Pair-wise comparisons revealed a significantly larger peak positive free moment amplitude (p = 0.010; d = 0.71) and a lower anterior-posterior impulse (p = 0.048; d = 0.38) when walking on sand. We observed significant main effects of “group” for the variable loading rate (p<0.030; d = 0.59). Pair-wise comparisons revealed significantly lower loading rates in PF compared with controls (p = 0.030; d = 0.61). Significant group by surface interactions were observed for the parameter peak positive free moment amplitude (p<0.030; d = 0.59). PF individuals exhibited a significantly lower peak positive free moment amplitude (p = 0.030, d = 0.41) when walking on sand. With regards to EMG, no significant main effects of “surface”, main effects of “group”, and group by surface interactions were observed for the recorded muscles during the loading and push-off phases (p>0.05; d = 0.00–0.53). Conclusions The observed lower velocities during walking on sand compared with stable ground were accompanied by lower peak positive free moments during the push-off phase and loading rates during the loading phase. Our findings of similar lower limb muscle activities during walking on sand compared with stable ground in PF together with lower free moment amplitudes, vertical loading rates, and lower walking velocities on sand may indicate more relative muscle activity on sand compared with stable ground. This needs to be verified in future studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 590 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441027 SN - 1866-8364 IS - 590 ER - TY - JOUR A1 - Chaabene, Helmi A1 - Negra, Yassine A1 - Capranica, Laura A1 - Prieske, Olaf A1 - Granacher, Urs T1 - A Needs Analysis of Karate Kumite With Recommendations for Performance Testing and Training JF - Strength and conditioning journal N2 - An effective training program needs to be customized to the specific demands of the redpective sport. Therefore, it is important to conduct a needs analysis to gain information on the unique characteristics of the sport. The objectives of thes review were (A) to conduct a systematic needs analysis of karate kumite and (B) to provide practical recommendations for sport-specific performance testing and training of karate kumite athletes. KW - sport profile KW - striking combat sports KW - strength KW - power KW - energetic systems KW - injury KW - assessment Y1 - 2019 U6 - https://doi.org/10.1519/SSC.0000000000000445 SN - 1524-1602 SN - 1533-4295 VL - 41 IS - 3 SP - 35 EP - 46 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Gebel, Arnd A1 - Lüder, Benjamin A1 - Granacher, Urs T1 - Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents JF - Frontiers in Physiology N2 - Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents. KW - balance training KW - balance strategy KW - muscle coactivation KW - youth KW - training intensity Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.01135 SN - 1664-042X VL - 10 IS - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Chaabene, Helmi A1 - Behm, David George A1 - Negra, Yassine A1 - Granacher, Urs T1 - Acute Effects of Static Stretching on Muscle Strength and Power BT - An Attempt to Clarify Previous Caveats JF - Frontiers in Physiology N2 - The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers’ knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1–2%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0–7.5%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition. KW - passive stretching KW - physical fitness KW - physiology KW - range of motion KW - injury Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.01468 SN - 1664-042X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Ben Othman, Aymen A1 - Chaouachi, Anis A1 - Chaouachi, Mehdi A1 - Makhlouf, Issam A1 - Farthing, Jonathan P. A1 - Granacher, Urs A1 - Behm, David George T1 - Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children JF - Applied Physiology, Nutrition, and Metabolism N2 - Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6%-81.8%; nondominant: 59.5%-96.3%), KE MVIC (dominant: 12.4%-18.3%; nondominant: 8.6%-18.6%), KF MVIC (dominant: 7.9%-22.3%; nondominant: nonsignificant-3.8%), and power (CMJ: dominant: 11.1%-18.1%; nondominant: 7.7%-16.6%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2%) and THT (9.6%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg. KW - resistance training KW - cross-education KW - youth KW - strength KW - power KW - balance Y1 - 2019 U6 - https://doi.org/10.1139/apnm-2018-0766 SN - 1715-5312 SN - 1715-5320 VL - 44 IS - 9 SP - 973 EP - 984 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Fatollahi, Amir A1 - Amirzadeh, Nasrin A1 - Siahkouhian, Marefat A1 - Granacher, Urs T1 - Ground Reaction Forces and Muscle Activity While Walking on Sand versus Stable Ground in Individuals with Pronated Feet Compared with Healthy Controls JF - PloS ONe N2 - Background Sand is an easy-to-access, cost-free resource that can be used to treat pronated feet (PF). Therefore, the aims of this study were to contrast the effects of walking on stable ground versus walking on sand on ground reaction forces (GRFs) and electromyographic (EMG) activity of selected lower limb muscles in PF individuals compared with healthy controls. Methods Twenty-nine controls aged 22.2±2.5 years and 30 PF individuals aged 22.2±1.9 years were enrolled in this study. Participants walked at preferred speed and in randomized order over level ground and sand. A force plate was included in the walkway to collect GRFs. Muscle activities were recorded using EMG system. Results No statistically significant between-group differences were found in preferred walking speed when walking on stable ground (PF: 1.33±0.12 m/s; controls: 1.35±0.14 m/s; p = 0.575; d = 0.15) and sand (PF: 1.19±0.11 m/s; controls: 1.23±0.18 m/s; p = 0.416; d = 0.27). Irrespective of the group, walking on sand (1.21±0.15 m/s) resulted in significantly lower gait speed compared with stable ground walking (1.34±0.13 m/s) (p<0.001; d = 0.93). Significant main effects of “surface” were found for peak posterior GRFs at heel contact, time to peak for peak lateral GRFs at heel contact, and peak anterior GRFs during push-off (p<0.044; d = 0.27–0.94). Pair-wise comparisons revealed significantly smaller peak posterior GRFs at heel contact (p = 0.005; d = 1.17), smaller peak anterior GRFs during push-off (p = 0.001; d = 1.14), and time to peak for peak lateral GRFs (p = 0.044; d = 0.28) when walking on sand. No significant main effects of “group” were observed for peak GRFs and their time to peak (p>0.05; d = 0.06–1.60). We could not find any significant group by surface interactions for peak GRFs and their time to peak. Significant main effects of “surface” were detected for anterior-posterior impulse and peak positive free moment amplitude (p<0.048; d = 0.54–0.71). Pair-wise comparisons revealed a significantly larger peak positive free moment amplitude (p = 0.010; d = 0.71) and a lower anterior-posterior impulse (p = 0.048; d = 0.38) when walking on sand. We observed significant main effects of “group” for the variable loading rate (p<0.030; d = 0.59). Pair-wise comparisons revealed significantly lower loading rates in PF compared with controls (p = 0.030; d = 0.61). Significant group by surface interactions were observed for the parameter peak positive free moment amplitude (p<0.030; d = 0.59). PF individuals exhibited a significantly lower peak positive free moment amplitude (p = 0.030, d = 0.41) when walking on sand. With regards to EMG, no significant main effects of “surface”, main effects of “group”, and group by surface interactions were observed for the recorded muscles during the loading and push-off phases (p>0.05; d = 0.00–0.53). Conclusions The observed lower velocities during walking on sand compared with stable ground were accompanied by lower peak positive free moments during the push-off phase and loading rates during the loading phase. Our findings of similar lower limb muscle activities during walking on sand compared with stable ground in PF together with lower free moment amplitudes, vertical loading rates, and lower walking velocities on sand may indicate more relative muscle activity on sand compared with stable ground. This needs to be verified in future studies. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0223219 SN - 1932-6203 VL - 9 IS - 14 PB - PloS ONe CY - San Francisco, California ER - TY - GEN A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Abdelkafy, Ashraf A1 - Ahmed, Mohamed A. A1 - Muaidi, Qassim I. A1 - Granacher, Urs T1 - Effects of Neuromuscular Fatigue on Eccentric Strength and Electromechanical Delay of the Knee Flexors BT - The Role of Training Status T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Purpose: To examine the effects of fatiguing isometric contractions on maximal eccentric strength and electromechanical delay (EMD) of the knee flexors in healthy young adults of different training status. Methods: Seventy-five male participants (27.7 ± 5.0 years) were enrolled in this study and allocated to three experimental groups according to their training status: athletes (ATH, n = 25), physically active adults (ACT, n = 25), and sedentary participants (SED, n = 25). The fatigue protocol comprised intermittent isometric knee flexions (6-s contraction, 4-s rest) at 60% of the maximum voluntary contraction until failure. Pre- and post-fatigue, maximal eccentric knee flexor strength and EMDs of the biceps femoris, semimembranosus, and semitendinosus muscles were assessed during maximal eccentric knee flexor actions at 60, 180, and 300°/s angular velocity. An analysis of covariance was computed with baseline (unfatigued) data included as a covariate. Results: Significant and large-sized main effects of group (p ≤ 0.017, 0.87 ≤ d ≤ 3.69) and/or angular velocity (p < 0.001, d = 1.81) were observed. Post hoc tests indicated that regardless of angular velocity, maximal eccentric knee flexor strength was lower and EMD was longer in SED compared with ATH and ACT (p ≤ 0.025, 0.76 ≤ d ≤ 1.82) and in ACT compared with ATH (p = ≤0.025, 0.76 ≤ d ≤ 1.82). Additionally, EMD at post-test was significantly longer at 300°/s compared with 60 and 180°/s (p < 0.001, 2.95 ≤ d ≤ 4.64) and at 180°/s compared with 60°/s (p < 0.001, d = 2.56), irrespective of training status. Conclusion: The main outcomes revealed significantly higher maximal eccentric strength and shorter eccentric EMDs of knee flexors in individuals with higher training status (i.e., athletes) following fatiguing exercises. Therefore, higher training status is associated with better neuromuscular functioning (i.e., strength, EMD) of the hamstring muscles in fatigued condition. Future longitudinal studies are needed to substantiate the clinical relevance of these findings. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 562 KW - muscle activation KW - hamstring muscles KW - latency KW - injury risk KW - physical fitness expertise Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435863 SN - 1866-8364 IS - 562 ER - TY - JOUR A1 - Zinke, Fridolin A1 - Gebel, Arnd A1 - Granacher, Urs A1 - Prieske, Olaf T1 - Acute Effects of Short-Term Local Tendon Vibration on Plantar Flexor Torque, Muscle Contractile Properties, Neuromuscular and Brain Activity in Young Athletes JF - Journal of sports science & medicine N2 - The purpose of this study was to examine the acute effects of short-term Achilles tendon vibration on plantar flexor torque, twitch contractile properties as well as muscle and cortical activity in young athletes. Eleven female elite soccer players aged 15.6 +/- 0.5 years participated in this study. Three different conditions were applied in randomized order: Achilles tendon vibration (80 Hz) for 30 and 300 s, and a passive control condition (300 s). Tests at baseline and following conditions included the assessment of peak plantar flexor torque during maximum voluntary contraction, electrically evoked muscle twitches (e.g., potentiated twitch peak torque [PT]), and electromyographic (EMG) activity of the plantar flexors. Additionally, electroencephalographic (EEG) activity of the primary motor and somatosensory cortex were assessed during a submaximal dynamic concentric-eccentric plantar flexion exercise using an elastic rubber band. Large-sized main effects of condition were found for EEG absolute alpha-1 and beta-1 band power (p <= 0.011; 1.5 <= d <= 2.6). Post-hoc tests indicated that alpha-1 power was significantly lower at 30 and 300 s (p = 0.009; d = 0.8) and beta-1 power significantly lower at 300 s (p < 0.001; d = 0.2) compared to control condition. No significant effect of condition was found for peak plantar flexor torque, electrical evoked muscle twitches, and EMG activity. In conclusion, short-term local Achilles tendon vibration induced lower brain activity (i.e., alpha-1 and beta-1 band power) but did not affect lower limb peak torque, twitch contractile properties, and muscle activity. Lower brain activity following short-term local Achilles tendon vibration may indicate improved cortical function during a submaximal dynamic exercise in female young soccer players. KW - Postactivation potentiation KW - electromyography KW - electroencephalography KW - maximum voluntary contraction KW - soccer Y1 - 2019 SN - 1303-2968 VL - 18 IS - 2 SP - 327 EP - 336 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - GEN A1 - Jafarnezhadgero, Amir Ali A1 - Alavi-Mehr, Seyed Majid A1 - Granacher, Urs T1 - Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet BT - The role of physical fatigue T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants’ ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of “footwear” for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46–0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of “footwear” were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00–1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of “footwear” (p<0.03; d = 0.92–1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of “Fatigue” for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of “Fatigue” for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83–1.01). The statistical analyses indicated significant a main effect of “Fatigue” for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 560 KW - hip KW - running KW - feet KW - skeletal joints KW - ankles KW - knees KW - material fatigue KW - body limbs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435415 SN - 1866-8364 IS - 560 ER - TY - GEN A1 - Zghal, Firas A1 - Colson, Serge S. A1 - Blain, Grégory A1 - Behm, David George A1 - Granacher, Urs A1 - Chaouachi, Anis T1 - Combined Resistance and Plyometric Training Is More Effective Than Plyometric Training Alone for Improving Physical Fitness of Pubertal Soccer Players T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - The purpose of this study was to compare the effects of combined resistance and plyometric/sprint training with plyometric/sprint training or typical soccer training alone on muscle strength and power, speed, change-of-direction ability in young soccer players. Thirty-one young (14.5 ± 0.52 years; tanner stage 3–4) soccer players were randomly assigned to either a combined- (COMB, n = 14), plyometric-training (PLYO, n = 9) or an active control group (CONT, n = 8). Two training sessions were added to the regular soccer training consisting of one session of light-load high-velocity resistance exercises combined with one session of plyometric/sprint training (COMB), two sessions of plyometric/sprint training (PLYO) or two soccer training sessions (CONT). Training volume was similar between the experimental groups. Before and after 7-weeks of training, peak torque, as well as absolute and relative (normalized to torque; RTDr) rate of torque development (RTD) during maximal voluntary isometric contraction of the knee extensors (KE) were monitored at time intervals from the onset of contraction to 200 ms. Jump height, sprinting speed at 5, 10, 20-m and change-of-direction ability performances were also assessed. There were no significant between–group baseline differences. Both COMB and PLYO significantly increased their jump height (Δ14.3%; ES = 0.94; Δ12.1%; ES = 0.54, respectively) and RTD at mid to late phases but with greater within effect sizes in COMB in comparison with PLYO. However, significant increases in peak torque (Δ16.9%; p < 0.001; ES = 0.58), RTD (Δ44.3%; ES = 0.71), RTDr (Δ27.3%; ES = 0.62) and sprint performance at 5-m (Δ-4.7%; p < 0.001; ES = 0.73) were found in COMB without any significant pre-to-post change in PLYO and CONT groups. Our results suggest that COMB is more effective than PLYO or CONT for enhancing strength, sprint and jump performances. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 576 KW - strength KW - power KW - rate of torque development KW - jumping KW - running Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437810 SN - 1866-8364 IS - 576 ER - TY - GEN A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Short-term seasonal development of anthropometry, body composition, physical fitness, and sport-specific performance in young olympic weightlifters T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The aim of this study is to monitor short-term seasonal development of young Olympic weightlifters’ anthropometry, body composition, physical fitness, and sport-specific performance. Fifteen male weightlifters aged 13.2 ± 1.3 years participated in this study. Tests for the assessment of anthropometry (e.g., body-height, body-mass), body-composition (e.g., lean-body-mass, relative fat-mass), muscle strength (grip-strength), jump performance (drop-jump (DJ) height, countermovement-jump (CMJ) height, DJ contact time, DJ reactive-strength-index (RSI)), dynamic balance (Y-balance-test), and sport-specific performance (i.e., snatch and clean-and-jerk) were conducted at different time-points (i.e., T1 (baseline), T2 (9 weeks), T3 (20 weeks)). Strength tests (i.e., grip strength, clean-and-jerk and snatch) and training volume were normalized to body mass. Results showed small-to-large increases in body-height, body-mass, lean-body-mass, and lower-limbs lean-mass from T1-to-T2 and T2-to-T3 (∆0.7–6.7%; 0.1 ≤ d ≤ 1.2). For fat-mass, a significant small-sized decrease was found from T1-to-T2 (∆13.1%; d = 0.4) and a significant increase from T2-to-T3 (∆9.1%; d = 0.3). A significant main effect of time was observed for DJ contact time (d = 1.3) with a trend toward a significant decrease from T1-to-T2 (∆–15.3%; d = 0.66; p = 0.06). For RSI, significant small increases from T1-to-T2 (∆9.9%, d = 0.5) were noted. Additionally, a significant main effect of time was found for snatch (d = 2.7) and clean-and-jerk (d = 3.1) with significant small-to-moderate increases for both tests from T1-to-T2 and T2-to-T3 (∆4.6–11.3%, d = 0.33 to 0.64). The other tests did not change significantly over time (0.1 ≤ d ≤ 0.8). Results showed significantly higher training volume for sport-specific training during the second period compared with the first period (d = 2.2). Five months of Olympic weightlifting contributed to significant changes in anthropometry, body-composition, and sport-specific performance. However, hardly any significant gains were observed for measures of physical fitness. Coaches are advised to design training programs that target a variety of fitness components to lay an appropriate foundation for later performance as an elite athlete. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 685 KW - strength KW - monitoring KW - young athletes KW - weight training KW - somatic variables KW - periodization KW - training load Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472609 SN - 1866-8364 IS - 685 ER - TY - JOUR A1 - El-Ashker, Said A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Abdelkafy, Ashraf A1 - Ahmed, Mohamed A. A1 - Muaidi, Qassim I. A1 - Granacher, Urs T1 - Effects of Neuromuscular Fatigue on Eccentric Strength and Electromechanical Delay of the Knee Flexors BT - The Role of Training Status JF - Frontiers in Physiology N2 - Purpose: To examine the effects of fatiguing isometric contractions on maximal eccentric strength and electromechanical delay (EMD) of the knee flexors in healthy young adults of different training status. Methods: Seventy-five male participants (27.7 ± 5.0 years) were enrolled in this study and allocated to three experimental groups according to their training status: athletes (ATH, n = 25), physically active adults (ACT, n = 25), and sedentary participants (SED, n = 25). The fatigue protocol comprised intermittent isometric knee flexions (6-s contraction, 4-s rest) at 60% of the maximum voluntary contraction until failure. Pre- and post-fatigue, maximal eccentric knee flexor strength and EMDs of the biceps femoris, semimembranosus, and semitendinosus muscles were assessed during maximal eccentric knee flexor actions at 60, 180, and 300°/s angular velocity. An analysis of covariance was computed with baseline (unfatigued) data included as a covariate. Results: Significant and large-sized main effects of group (p ≤ 0.017, 0.87 ≤ d ≤ 3.69) and/or angular velocity (p < 0.001, d = 1.81) were observed. Post hoc tests indicated that regardless of angular velocity, maximal eccentric knee flexor strength was lower and EMD was longer in SED compared with ATH and ACT (p ≤ 0.025, 0.76 ≤ d ≤ 1.82) and in ACT compared with ATH (p = ≤0.025, 0.76 ≤ d ≤ 1.82). Additionally, EMD at post-test was significantly longer at 300°/s compared with 60 and 180°/s (p < 0.001, 2.95 ≤ d ≤ 4.64) and at 180°/s compared with 60°/s (p < 0.001, d = 2.56), irrespective of training status. Conclusion: The main outcomes revealed significantly higher maximal eccentric strength and shorter eccentric EMDs of knee flexors in individuals with higher training status (i.e., athletes) following fatiguing exercises. Therefore, higher training status is associated with better neuromuscular functioning (i.e., strength, EMD) of the hamstring muscles in fatigued condition. Future longitudinal studies are needed to substantiate the clinical relevance of these findings. KW - muscle activation KW - hamstring muscles KW - latency KW - injury risk KW - physical fitness expertise Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.00782 SN - 1664-042X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Chaabene, Helmi A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Sandau, Ingo A1 - Granacher, Urs T1 - Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters JF - Sports KW - strength KW - monitoring KW - young athletes KW - weight training KW - somatic variables KW - periodization KW - training load Y1 - 2019 U6 - https://doi.org/10.3390/sports7120242 SN - 2075-4663 VL - 7 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Chaouachi, Anis A1 - Ben Othman, Aymen A1 - Makhlouf, Issam A1 - Young, James D. A1 - Granacher, Urs A1 - Behm, David George T1 - Global Training Effects of Trained and Untrained Muscles With Youth Can be Maintained During 4 Weeks of Detraining JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Global (whole-body) effects of resistance training (i.e., cross-education) may be pervasive with children. Detraining induces less substantial deficits with children than adults. It was the objective of this study to investigate the global responses to 4 weeks of detraining after 8 weeks of unilateral leg press (LP) training in 10-13-year-old, pre-peak-height-velocity stage boys. Subjects were randomly separated into 2 unilateral resistance training groups (high load/low repetitions [HL-LR] and low load/high repetitions [LL-HR], and control group). Assessments at pre-training, post-training, and detraining included dominant and nondominant limbs, unilateral, 1 repetition maximum (1RM) and 60% 1RM LP, knee extension, knee flexion, elbow flexion, and handgrip maximal voluntary isometric contraction (MVIC), and countermovement jump (CMJ). All measures significantly increased from pre-test to detraining for both training programs, except for elbow flexion MVIC with increases only with HL-LR. All measures except CMJ and handgrip MVIC significantly decreased from post-test to detraining, except for elbow flexion MVIC with decreases only with HL-LR. The dominant trained limb experienced significantly greater LP improvements (pre- to detraining) and decrements (post- to detraining) with LP 1RM and 60% 1RM LP. In conclusion, youth HL-LR and LL-HR global training effects of trained and untrained limbs demonstrate similar benefits (pre- to detraining) and decrements (post- to detraining) with detraining. The findings emphasize that training any muscle group in a child can have positive global implications for improved strength and power that can persist over baseline measures for at least a month. KW - adolescents KW - strength training KW - deconditioning KW - cross-education KW - children Y1 - 2019 U6 - https://doi.org/10.1519/JSC.0000000000002606 SN - 1064-8011 SN - 1533-4287 VL - 33 IS - 10 SP - 2788 EP - 2800 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Coppalle, Sullivan A1 - Rave, Guillaume A1 - Ben Abderrahman, Abderraouf A1 - Ali, Ajmol A1 - Salhi, Iyed A1 - Zouita, Sghaier A1 - Zouita, Amira A1 - Brughelli, Matt A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Relationship of Pre-season Training Load With In-Season Biochemical Markers, Injuries and Performance in Professional Soccer Players JF - Frontiers in Physiology N2 - There is controversy in the literature in regards of the link between training load and injury rate. Thus, the aims of this non-interventional study were to evaluate relationships between pre-season training load with biochemical markers, injury incidence and performance during the first month of the competitive period in professional soccer players. KW - elite athletes KW - global positioning system KW - monitoring KW - blood sample KW - football Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.00409 SN - 1664-042X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Zouhal, Hassane A1 - Ben Abderrahman, Abderraouf A1 - Dupont, Gregory A1 - Truptin, Pablo A1 - Le Bris, Régis A1 - Le Postec, Erwan A1 - Sghaeir, Zouita A1 - Brughelli, Matt A1 - Granacher, Urs A1 - Bideau, Benoit T1 - Effects of Neuromuscular Training on Agility Performance in Elite Soccer Players JF - Frontiers in Physiology N2 - Background: Agility in general and change-of-direction speed (CoD) in particular represent important performance determinants in elite soccer. Objectives: The objectives of this study were to determine the effects of a 6-week neuromuscular training program on agility performance, and to determine differences in movement times between the slower and faster turning directions in elite soccer players. Materials and Methods: Twenty male elite soccer players from the Stade Rennais Football Club (Ligue 1, France) participated in this study. The players were randomly assigned to a neuromuscular training group (NTG, n = 10) or an active control (CG, n = 10) according to their playing position. NTG participated in a 6-week, twice per week neuromuscular training program that included CoD, plyometric and dynamic stability exercises. Neuromuscular training replaced the regular warm-up program. Each training session lasted 30 min. CG continued their regular training program. Training volume was similar between groups. Before and after the intervention, the two groups performed a reactive agility test that included 180° left and right body rotations followed by a 5-m linear sprint. The weak side was defined as the left/right turning direction that produced slower overall movement times (MT). Reaction time (RT) was assessed and defined as the time from the first appearance of a visual stimulus until the athlete’s first movement. MT corresponded to the time from the first movement until the athlete reached the arrival gate (5 m distance). Results: No significant between-group baseline differences were observed for RT or MT. Significant group x time interactions were found for MT (p = 0.012, effect size = 0.332, small) for the slower and faster directions (p = 0.011, effect size = 0.627, moderate). Significant pre-to post improvements in MT were observed for NTG but not CG (p = 0.011, effect size = 0.877, moderate). For NTG, post hoc analyses revealed significant MT improvements for the slower (p = 0.012, effect size = 0.897, moderate) and faster directions (p = 0.017, effect size = 0.968, moderate). Conclusion: Our results illustrate that 6 weeks of neuromuscular training with two sessions per week included in the warm-up program, significantly enhanced agility performance in elite soccer players. Moreover, improvements were found on both sides during body rotations. Thus, practitioners are advised to focus their training programs on both turning directions. KW - laterality KW - football KW - footedness KW - eyedness KW - rotation KW - team sport Y1 - 2019 U6 - https://doi.org/10.3389/fphys.2019.00947 SN - 1664-042X VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Coppalle, Sullivan A1 - Rave, Guillaume A1 - Ben Abderrahman, Abderraouf A1 - Ali, Ajmol A1 - Salhi, Iyed A1 - Zouita, Sghaier A1 - Zouita, Amira A1 - Brughelli, Matt A1 - Granacher, Urs A1 - Zouhal, Hassane T1 - Relationship of Pre-season Training Load With In-Season Biochemical Markers, Injuries and Performance in Professional Soccer Players T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - There is controversy in the literature in regards of the link between training load and injury rate. Thus, the aims of this non-interventional study were to evaluate relationships between pre-season training load with biochemical markers, injury incidence and performance during the first month of the competitive period in professional soccer players. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 564 KW - football KW - global positioning system KW - blood sample KW - monitoring KW - elite athletes Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436025 IS - 564 ER - TY - GEN A1 - Zouhal, Hassane A1 - Ben Abderrahman, Abderraouf A1 - Dupont, Gregory A1 - Truptin, Pablo A1 - Le Bris, Régis A1 - Le Postec, Erwan A1 - Sghaeir, Zouita A1 - Brughelli, Matt A1 - Granacher, Urs A1 - Bideau, Benoit T1 - Effects of Neuromuscular Training on Agility Performance in Elite Soccer Players T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Background: Agility in general and change-of-direction speed (CoD) in particular represent important performance determinants in elite soccer. Objectives: The objectives of this study were to determine the effects of a 6-week neuromuscular training program on agility performance, and to determine differences in movement times between the slower and faster turning directions in elite soccer players. Materials and Methods: Twenty male elite soccer players from the Stade Rennais Football Club (Ligue 1, France) participated in this study. The players were randomly assigned to a neuromuscular training group (NTG, n = 10) or an active control (CG, n = 10) according to their playing position. NTG participated in a 6-week, twice per week neuromuscular training program that included CoD, plyometric and dynamic stability exercises. Neuromuscular training replaced the regular warm-up program. Each training session lasted 30 min. CG continued their regular training program. Training volume was similar between groups. Before and after the intervention, the two groups performed a reactive agility test that included 180° left and right body rotations followed by a 5-m linear sprint. The weak side was defined as the left/right turning direction that produced slower overall movement times (MT). Reaction time (RT) was assessed and defined as the time from the first appearance of a visual stimulus until the athlete’s first movement. MT corresponded to the time from the first movement until the athlete reached the arrival gate (5 m distance). Results: No significant between-group baseline differences were observed for RT or MT. Significant group x time interactions were found for MT (p = 0.012, effect size = 0.332, small) for the slower and faster directions (p = 0.011, effect size = 0.627, moderate). Significant pre-to post improvements in MT were observed for NTG but not CG (p = 0.011, effect size = 0.877, moderate). For NTG, post hoc analyses revealed significant MT improvements for the slower (p = 0.012, effect size = 0.897, moderate) and faster directions (p = 0.017, effect size = 0.968, moderate). Conclusion: Our results illustrate that 6 weeks of neuromuscular training with two sessions per week included in the warm-up program, significantly enhanced agility performance in elite soccer players. Moreover, improvements were found on both sides during body rotations. Thus, practitioners are advised to focus their training programs on both turning directions. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 575 KW - laterality KW - football KW - footedness KW - eyedness KW - rotation KW - team sport Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437358 SN - 1866-8364 IS - 575 ER - TY - GEN A1 - Gebel, Arnd A1 - Lüder, Benjamin A1 - Granacher, Urs T1 - Effects of Increasing Balance Task Difficulty on Postural Sway and Muscle Activity in Healthy Adolescents T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - Evidence-based prescriptions for balance training in youth have recently been established. However, there is currently no standardized means available to assess and quantify balance task difficulty (BTD). Therefore, the objectives of this study were to examine the effects of graded BTD on postural sway, lower limb muscle activity and coactivation in adolescents. Thirteen healthy high-school students aged 16 to 17 volunteered to participate in this cross-sectional study. Testing involved participants to stand on a commercially available balance board with an adjustable pivot that allowed six levels of increasing task difficulty. Postural sway [i.e., total center of pressure (CoP) displacements] and lower limb muscle activity were recorded simultaneously during each trial. Surface electromyography (EMG) was applied in muscles encompassing the ankle (m. tibialis anterior, medial gastrocnemius, peroneus longus) and knee joint (m. vastus medialis, biceps femoris). The coactivation index (CAI) was calculated for ankle and thigh muscles. Repeated measures analyses of variance revealed a significant main effect of BTD with increasing task difficulty for postural sway (p < 0.001; d = 6.36), muscle activity (p < 0.001; 2.19 < d < 4.88), and CAI (p < 0.001; 1.32 < d < 1.41). Multiple regression analyses showed that m. tibialis anterior activity best explained overall CoP displacements with 32.5% explained variance (p < 0.001). The observed increases in postural sway, lower limb muscle activity, and coactivation indicate increasing postural demands while standing on the balance board. Thus, the examined board can be implemented in balance training to progressively increase BTD in healthy adolescents. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 583 KW - balance training KW - balance strategy KW - muscle coactivation KW - youth KW - training intensity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-439211 SN - 1866-8364 IS - 583 ER - TY - GEN A1 - Chaabene, Helmi A1 - Behm, David George A1 - Negra, Yassine A1 - Granacher, Urs T1 - Acute Effects of Static Stretching on Muscle Strength and Power BT - An Attempt to Clarify Previous Caveats T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - The effects of static stretching (StS) on subsequent strength and power activities has been one of the most debated topics in sport science literature over the past decades. The aim of this review is (1) to summarize previous and current findings on the acute effects of StS on muscle strength and power performances; (2) to update readers’ knowledge related to previous caveats; and (3) to discuss the underlying physiological mechanisms of short-duration StS when performed as single-mode treatment or when integrated into a full warm-up routine. Over the last two decades, StS has been considered harmful to subsequent strength and power performances. Accordingly, it has been recommended not to apply StS before strength- and power-related activities. More recent evidence suggests that when performed as a single-mode treatment or when integrated within a full warm-up routine including aerobic activity, dynamic-stretching, and sport-specific activities, short-duration StS (≤60 s per muscle group) trivially impairs subsequent strength and power activities (∆1–2%). Yet, longer StS durations (>60 s per muscle group) appear to induce substantial and practically relevant declines in strength and power performances (∆4.0–7.5%). Moreover, recent evidence suggests that when included in a full warm-up routine, short-duration StS may even contribute to lower the risk of sustaining musculotendinous injuries especially with high-intensity activities (e.g., sprint running and change of direction speed). It seems that during short-duration StS, neuromuscular activation and musculotendinous stiffness appear not to be affected compared with long-duration StS. Among other factors, this could be due to an elevated muscle temperature induced by a dynamic warm-up program. More specifically, elevated muscle temperature leads to increased muscle fiber conduction-velocity and improved binding of contractile proteins (actin, myosin). Therefore, our previous understanding of harmful StS effects on subsequent strength and power activities has to be updated. In fact, short-duration StS should be included as an important warm-up component before the uptake of recreational sports activities due to its potential positive effect on flexibility and musculotendinous injury prevention. However, in high-performance athletes, short-duration StS has to be applied with caution due to its negligible but still prevalent negative effects on subsequent strength and power performances, which could have an impact on performance during competition. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 585 KW - passive stretching KW - physical fitness KW - physiology KW - range of motion KW - injury Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440036 SN - 1866-8364 IS - 585 ER - TY - JOUR A1 - Madadi-Shad, Morteza A1 - Jafarnezhadgero, Amir Ali A1 - Zago, Matteo A1 - Granacher, Urs T1 - Effects of varus knee alignment on gait biomechanics and lower limb muscle activity in boys BT - A cross sectional study JF - Gait & posture N2 - Background: There is evidence that frontal plane lower limb malalignment (e.g., genu varus) is a risk factor for knee osteoarthritis development. However, only scarce information is available on gait biomechanics and muscle activity in boys with genu varus. Research question: To examine the effects of knee varus alignment on lower limb kinematics, kinetics and muscular activity during walking at self-selected speed in boys with genu varus versus healthy age-matched controls. Methods: Thirty-six boys were enrolled in this study and divided into a group of boys with genu varus (n = 18; age: 11.66 +/- 1.64 years) and healthy controls (n = 18; age: 11.44 +/- 1.78 years). Three-dimensional kinematics, ground reaction forces, loading rates, impulses and free moments of both limbs were recorded during five walking trials at self-selected speed. Surface electromyography was recorded for rectus femoris and vastus lateralis/medialis muscles. Results: No significant between-group differences were found for gait speed. Participants in the genu varus group versus controls showed larger peak knee flexion (p = 0.030; d = 0.77), peak knee adduction (p < 0.001; d = 1.63), and peak ankle eversion angles (p < 0.001; d = 2.06). Significantly higher peak ground reaction forces were found at heel contact (vertical [p = 0.002; d = 1.16] and posterior [p < 0.001; d = 1.63] components) and at push off (vertical [p = 0.010; d = 0.93] and anterior [p < 0.001; d = 1.34] components) for genu varus versus controls. Peak medial ground reaction force (p = 0.032; d = 0.76), vertical loading rate (p < 0.001; d = 1.52), anterior-posterior impulse (p = 0.011; d = 0.92), and peak negative free moment (p = 0.030; d = 0.77) were significantly higher in genu varus. Finally, time to reach peak forces was significantly shorter in genu varus boys compared with healthy controls (p < 0.01; d = 0.73-1.60). The genu varus group showed higher activities in vastus lateralis (p < 0.001; d = 1.82) and vastus medialis (p = 0.013; d = 0.90) during the loading phase of walking. Significance: Our study revealed genu varus specific gait characteristics and muscle activities. Greater knee adduction angle in genu varus boys may increase the load on the medial compartment of the knee joint. The observed characteristics in lower limb biomechanics and muscle activity could play a role in the early development of knee osteoarthritis in genu varus boys. KW - Bow leg KW - Quadriceps strength KW - Ground reaction force KW - Pediatric gait KW - Electromyography Y1 - 2019 U6 - https://doi.org/10.1016/j.gaitpost.2019.05.030 SN - 0966-6362 SN - 1879-2219 VL - 72 SP - 69 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Alavi-Mehr, Seyed Majid A1 - Granacher, Urs T1 - Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet BT - The role of physical fatigue JF - PLoS ONE N2 - Physical fatigue and pronated feet constitute two risk factors for running-related lower limb injuries. Accordingly, different running shoe companies designed anti-pronation shoes with medial support to limit over pronation in runners. However, there is little evidence on the effectiveness and clinical relevance of anti-pronation shoes. This study examined lower limb kinematics and kinetics in young female runners with pronated feet during running with antipronation versus regular (neutral) running shoes in unfatigued and fatigued condition. Twenty-six female runners aged 24.1±5.6 years with pronated feet volunteered to participate in this study. Kinetic (3D Kistler force plate) and kinematic analyses (Vicon motion analysis system) were conducted to record participants’ ground reaction forces and joint kinematics when running with anti-pronation compared with neutral running shoes. Physical fatigue was induced through an individualized submaximal running protocol on a motorized treadmill using rate of perceived exertion and heart rate monitoring. The statistical analyses indicated significant main effects of “footwear” for peak ankle inversion, peak ankle eversion, and peak hip internal rotation angles (p<0.03; d = 0.46–0.95). Pair-wise comparisons revealed a significantly greater peak ankle inversion angle (p<0.03; d = 0.95; 2.70°) and smaller peak eversion angle (p<0.03; d = 0.46; 2.53°) when running with anti-pronation shoes compared with neutral shoes. For kinetic data, significant main effects of “footwear” were found for peak ankle dorsiflexor moment, peak knee extensor moment, peak hip flexor moment, peak hip extensor moment, peak hip abductor moment, and peak hip internal rotator moment (p<0.02; d = 1.00–1.79). For peak positive hip power in sagittal and frontal planes and peak negative hip power in horizontal plane, we observed significant main effects of “footwear” (p<0.03; d = 0.92–1.06). Pairwise comparisons revealed that peak positive hip power in sagittal plane (p<0.03; d = 0.98; 2.39 w/kg), peak positive hip power in frontal plane (p = 0.014; d = 1.06; 0.54 w/kg), and peak negative hip power in horizontal plane (p<0.03; d = 0.92; 0.43 w/kg) were greater with anti-pronation shoes. Furthermore, the statistical analyses indicated significant main effects of “Fatigue” for peak ankle inversion, peak ankle eversion, and peak knee external rotation angles. Pair-wise comparisons revealed a fatigue-induced decrease in peak ankle inversion angle (p<0.01; d = 1.23; 2.69°) and a fatigue-induced increase in peak knee external rotation angle (p<0.05; d = 0.83; 5.40°). In addition, a fatigue-related increase was found for peak ankle eversion (p<0.01; d = 1.24; 2.67°). For kinetic data, we observed a significant main effect of “Fatigue” for knee flexor moment, knee internal rotator moment, and hip extensor moment (p<0.05; d = 0.83–1.01). The statistical analyses indicated significant a main effect of “Fatigue” for peak negative ankle power in sagittal plane (p<0.01; d = 1.25). Finally, we could not detect any significant footwear by fatigue interaction effects for all measures of joint kinetics and kinematics. Running in anti-pronation compared with neutral running shoes produced lower peak moments and powers in lower limb joints and better control in rear foot eversion. Physical fatigue increased peak moments and powers in lower limb joints irrespective of the type of footwear. KW - hip KW - running KW - feet KW - skeletal joints KW - ankles KW - knees KW - material fatigue KW - body limbs Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0216818 SN - 1932-6203 VL - 14 IS - 5 PB - Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Sammoud, Senda A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Bouguezzi, Raja A1 - Moran, Jason A1 - Granacher, Urs T1 - The Effects of Plyometric Jump Training on Jumping and Swimming Performances in Prepubertal Male Swimmers JF - Journal of sports science & medicine N2 - Swimming performance can be improved not only by in-water sport-specific training but also by means of dry land-training (e.g., plyometric jump training [PJT]). This study examined the effects of an 8-week PJT on proxies of muscle power and swimming performance in prepubertal male swimmers. Participants were randomly allocated to a PJT group (PJT; n = 14; age: 10.3 +/- 0.4 years, maturity-offset = -3 +/- 0.3) or a control group (CG; n = 12; age: 10.5 +/- 0.4 years, maturity-offset = -2.8 +/- 0.3). Swimmers in PJT and CG performed 6 training sessions per week. Each training session lasted between 80 and 90 minutes. Over the 8 weeks in-season training period, PJT performed two PJT sessions per week, each lasting between 25 to 30 minutes (similar to 1 hour per week) in replacement of sport-specific swimming drills. During that time, CG followed their regular sport-specific swimming training (e.g., coordination, breathing, improving swimming strokes). Overall training volume was similar between groups. Pre- and post-training, tests were conducted to assess proxies of muscle power (countermovement-jump [CMJ]), standing-long-jump [SLJ]) and sport-specific swimming performances (15-, 25-, and 50-m front-crawl, 25-m kick without push [25-m kick WP], and 25-m front-crawl WP). No training or test-related injuries were detected over the course of the study. Between-group analyses derived from magnitude-based inferences showed trivial-to-large effects in favour of PJT for all tests (ES = 0.28 to 1.43). Within-group analyses for the PJT showed small performance improvements for CMJ (effect-size [ES] = 0.53), 25-m kick WP (ES = 0.25), and 50-m front crawl (ES = 0.56) tests. Moderate performance improvements were observed for the SLJ, 25-m front-crawl WP, 15-m and 25-m front-crawl tests (ES = 0.95, 0.60, 0.99, and 0.85, respectively). For CG, the within-group results showed trivial performance declines for the CMJ (ES=-0.13) and the 50-m front-crawl test (ES = -0.04). In addition, trivial-to-small performance improvements were observed for the SLJ (ES = 0.09), 25-m kick WP (ES = 0.02), 25-m front-crawl WP (ES = 0.19), 25-m front-crawl (ES = 0.2), (SLJ [ES = 0.09, and 15-m front crawl (ES = 0.36). Short-term in-season PJT, integrated into the regular swimming training, was more effective than regular swimming training alone in improving jump and sport-specific swimming performances in prepubertal male swimmers. KW - Stretch-shortening cycle KW - young athletes KW - rate of force development KW - sport-specific performance Y1 - 2019 SN - 1303-2968 VL - 18 IS - 4 SP - 805 EP - 811 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER -