TY - JOUR A1 - Puta, Christian A1 - Steidten, Thomas A1 - Baumbach, Philipp A1 - Woehrl, Toni A1 - May, Rico A1 - Kellmann, Michael A1 - Herbsleb, Marco A1 - Gabriel, Brunhild A1 - Weber, Stephanie A1 - Granacher, Urs A1 - Gabriel, Holger H. W. T1 - Standardized assessment of resistance training-Induced subjective symptoms and objective signs of immunological stress responses in young athletes JF - Frontiers in physiology N2 - From a health and performance-related perspective, it is crucial to evaluate subjective symptoms and objective signs of acute training-induced immunological responses in young athletes. The limited number of available studies focused on immunological adaptations following aerobic training. Hardly any studies have been conducted on resistance-training induced stress responses. Therefore, the aim of this observational study was to investigate subjective symptoms and objective signs of immunological stress responses following resistance training in young athletes. Fourteen (7 females and 7 males) track and field athletes with a mean age of 16.4 years and without any symptoms of upper or lower respiratory tract infections participated in this study. Over a period of 7 days, subjective symptoms using the Acute Recovery and Stress Scale (ARSS) and objective signs of immunological responses using capillary blood markers were taken each morning and after the last training session. Differences between morning and evening sessions and associations between subjective and objective parameters were analyzed using generalized estimating equations (GEE). In post hoc analyses, daily change-scores of the ARSS dimensions were compared between participants and revealed specific changes in objective capillary blood samples. In the GEE models, recovery (ARSS) was characterized by a significant decrease while stress (ARSS) showed a significant increase between morning and evening-training sessions. A concomitant increase in white blood cell count (WBC), granulocytes (GRAN) and percentage shares of granulocytes (GRAN%) was found between morning and evening sessions. Of note, percentage shares of lymphocytes (LYM%) showed a significant decrease. Furthermore, using multivariate regression analyses, we identified that recovery was significantly associated with LYM%, while stress was significantly associated with WBC and GRAN%. Post hoc analyses revealed significantly larger increases in participants' stress dimensions who showed increases in GRAN%. For recovery, significantly larger decreases were found in participants with decreases in LYM% during recovery. More specifically, daily change-scores of the recovery and stress dimensions of the ARSS were associated with specific changes in objective immunological markers (GRAN%, LYM%) between morning and evening-training sessions. Our results indicate that changes of subjective symptoms of recovery and stress dimensions using the ARSS were associated with specific changes in objectively measured immunological markers. KW - immune system KW - strength training KW - track and field KW - youth KW - Acute Recovery and Stress Scale (ARSS) Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.00698 SN - 1664-042X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Puta, Christian A1 - Steidten, Thomas A1 - Baumbach, Philipp A1 - Wöhrl, Toni A1 - May, Rico A1 - Kellmann, Michael A1 - Herbsleb, Marco A1 - Gabriel, Brunhild A1 - Weber, Stephanie A1 - Granacher, Urs A1 - Gabriel, Holger H. W. T1 - Standardized assessment of resistance training BT - Induced subjective symptoms and objective signs of immunological stress responses in young athletes T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe N2 - From a health and performance-related perspective, it is crucial to evaluate subjective symptoms and objective signs of acute training-induced immunological responses in young athletes. The limited number of available studies focused on immunological adaptations following aerobic training. Hardly any studies have been conducted on resistance-training induced stress responses. Therefore, the aim of this observational study was to investigate subjective symptoms and objective signs of immunological stress responses following resistance training in young athletes. Fourteen (7 females and 7 males) track and field athletes with a mean age of 16.4 years and without any symptoms of upper or lower respiratory tract infections participated in this study. Over a period of 7 days, subjective symptoms using the Acute Recovery and Stress Scale (ARSS) and objective signs of immunological responses using capillary blood markers were taken each morning and after the last training session. Differences between morning and evening sessions and associations between subjective and objective parameters were analyzed using generalized estimating equations (GEE). In post hoc analyses, daily change-scores of the ARSS dimensions were compared between participants and revealed specific changes in objective capillary blood samples. In the GEE models, recovery (ARSS) was characterized by a significant decrease while stress (ARSS) showed a significant increase between morning and evening-training sessions. A concomitant increase in white blood cell count (WBC), granulocytes (GRAN) and percentage shares of granulocytes (GRAN%) was found between morning and evening sessions. Of note, percentage shares of lymphocytes (LYM%) showed a significant decrease. Furthermore, using multivariate regression analyses, we identified that recovery was significantly associated with LYM%, while stress was significantly associated with WBC and GRAN%. Post hoc analyses revealed significantly larger increases in participants’ stress dimensions who showed increases in GRAN%. For recovery, significantly larger decreases were found in participants with decreases in LYM% during recovery. More specifically, daily change-scores of the recovery and stress dimensions of the ARSS were associated with specific changes in objective immunological markers (GRAN%, LYM%) between morning and evening-training sessions. Our results indicate that changes of subjective symptoms of recovery and stress dimensions using the ARSS were associated with specific changes in objectively measured immunological markers. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 542 KW - immune system KW - strength training KW - track and field KW - youth KW - Acute Recovery and Stress Scale (ARSS) Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426289 SN - 1866-8364 IS - 542 ER - TY - GEN A1 - Slimani, Maamer A1 - Paravlic, Armin A1 - Granacher, Urs T1 - A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - It is well-documented that strength training (ST) improves measures of muscle strength in young athletes. Less is known on transfer effects of ST on proxies of muscle power and the underlying dose-response relationships. The objectives of this meta-analysis were to quantify the effects of ST on lower limb muscle power in young athletes and to provide dose-response relationships for ST modalities such as frequency, intensity, and volume. A systematic literature search of electronic databases identified 895 records. Studies were eligible for inclusion if (i) healthy trained children (girls aged 6–11 y, boys aged 6–13 y) or adolescents (girls aged 12–18 y, boys aged 14–18 y) were examined, (ii) ST was compared with an active control, and (iii) at least one proxy of muscle power [squat jump (SJ) and countermovement jump height (CMJ)] was reported. Weighted mean standardized mean differences (SMDwm) between subjects were calculated. Based on the findings from 15 statistically aggregated studies, ST produced significant but small effects on CMJ height (SMDwm = 0.65; 95% CI 0.34–0.96) and moderate effects on SJ height (SMDwm = 0.80; 95% CI 0.23–1.37). The sub-analyses revealed that the moderating variable expertise level (CMJ height: p = 0.06; SJ height: N/A) did not significantly influence ST-related effects on proxies of muscle power. “Age” and “sex” moderated ST effects on SJ (p = 0.005) and CMJ height (p = 0.03), respectively. With regard to the dose-response relationships, findings from the meta-regression showed that none of the included training modalities predicted ST effects on CMJ height. For SJ height, the meta-regression indicated that the training modality “training duration” significantly predicted the observed gains (p = 0.02), with longer training durations (>8 weeks) showing larger improvements. This meta-analysis clearly proved the general effectiveness of ST on lower-limb muscle power in young athletes, irrespective of the moderating variables. Dose-response analyses revealed that longer training durations (>8 weeks) are more effective to improve SJ height. No such training modalities were found for CMJ height. Thus, there appear to be other training modalities besides the ones that were included in our analyses that may have an effect on SJ and particularly CMJ height. ST monitoring through rating of perceived exertion, movement velocity or force-velocity profile could be promising monitoring tools for lower-limb muscle power development in young athletes. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 472 KW - resistance training KW - muscle fitness KW - youth KW - meta-analysis KW - jump performance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417738 IS - 472 ER - TY - JOUR A1 - Slimani, Maamer A1 - Paravlic, Armin A1 - Granacher, Urs T1 - A Meta-Analysis to Determine Strength Training Related Dose-Response Relationships for Lower-Limb Muscle Power Development in Young Athletes JF - Frontiers in Physiology N2 - It is well-documented that strength training (ST) improves measures of muscle strength in young athletes. Less is known on transfer effects of ST on proxies of muscle power and the underlying dose-response relationships. The objectives of this meta-analysis were to quantify the effects of ST on lower limb muscle power in young athletes and to provide dose-response relationships for ST modalities such as frequency, intensity, and volume. A systematic literature search of electronic databases identified 895 records. Studies were eligible for inclusion if (i) healthy trained children (girls aged 6–11 y, boys aged 6–13 y) or adolescents (girls aged 12–18 y, boys aged 14–18 y) were examined, (ii) ST was compared with an active control, and (iii) at least one proxy of muscle power [squat jump (SJ) and countermovement jump height (CMJ)] was reported. Weighted mean standardized mean differences (SMDwm) between subjects were calculated. Based on the findings from 15 statistically aggregated studies, ST produced significant but small effects on CMJ height (SMDwm = 0.65; 95% CI 0.34–0.96) and moderate effects on SJ height (SMDwm = 0.80; 95% CI 0.23–1.37). The sub-analyses revealed that the moderating variable expertise level (CMJ height: p = 0.06; SJ height: N/A) did not significantly influence ST-related effects on proxies of muscle power. “Age” and “sex” moderated ST effects on SJ (p = 0.005) and CMJ height (p = 0.03), respectively. With regard to the dose-response relationships, findings from the meta-regression showed that none of the included training modalities predicted ST effects on CMJ height. For SJ height, the meta-regression indicated that the training modality “training duration” significantly predicted the observed gains (p = 0.02), with longer training durations (>8 weeks) showing larger improvements. This meta-analysis clearly proved the general effectiveness of ST on lower-limb muscle power in young athletes, irrespective of the moderating variables. Dose-response analyses revealed that longer training durations (>8 weeks) are more effective to improve SJ height. No such training modalities were found for CMJ height. Thus, there appear to be other training modalities besides the ones that were included in our analyses that may have an effect on SJ and particularly CMJ height. ST monitoring through rating of perceived exertion, movement velocity or force-velocity profile could be promising monitoring tools for lower-limb muscle power development in young athletes. KW - resistance training KW - muscle fitness KW - youth KW - meta-analysis KW - jump performance Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.01155 SN - 1664-042X VL - 9 SP - 1 EP - 14 PB - Frontiers Research Foundation CY - Lausanne ER -