TY - JOUR A1 - Chaabene, Helmi A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Performance- and healthrelated benefits of youth resistance training T1 - Leistungs- und gesundheitsbezogene Wirkungen von Krafttraining mit Heranwachsenden JF - Sports Orthopaedics and Traumatology N2 - Performance- and healthrelated benefits of yoThere is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths’ exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.uth resistance training N2 - Die aktuelle Literatur zum Krafttraining mit Kindern und Jugendlichen zeigt eindrücklich, dass ein altersgerechtes und fachlich angeleitetes Krafttraining eine sichere, freudvolle und effektive Maßnahme für die Leistungsentwicklung (z. B. Muskelkraft, Schnellkraft, Sprintgeschwindigkeit) und Gesundheitserhaltung (z. B. Verletzungsprävention) von Heranwachsenden darstellt. Einerseits ist es das Ziel dieses narrativen Übersichtsartikels, die Relevanz der Muskelkraft für die körperliche Entwicklung von Heranwachsenden zu diskutieren. Andererseits sollen aktuelle Befunde zur Effektivität von Krafttraining auf die muskuläre Fitness (Maximal-/Schnellkraft, Kraftausdauer), elementare Bewegungsfertigkeiten (z.B. Springen, Rennen, Werfen) sowie die Verletzungsprävention bei Kindern und Jugendlichen beschrieben werden. Die aktuelle Literatur belegt, dass Krafttraining die Muskelkraft, die Schnellkraft und die Kraftausdauer von Kindern und Jugendlichen unabhängig vom Geschlecht verbessern kann. Weiterhin zeigen Studien, dass trainingsbedingte Verbesserungen der muskulären Fitness auf elementare Bewegungsfertigkeiten transferieren. Diese Wirkungen sind unabhängig vom Alter, der biologischen Reife, dem Trainingsstatus und dem Geschlecht der Trainierenden. Zudem verringert regelmäßiges Krafttraining das Verletzungsrisiko der Heranwachsenden unabhängig von Alter, Geschlecht und Trainingsstatus. Aufgrund dieses breiten Wirkungsspektrums sollte Krafttraining ein elementarer Bestandteil des Trainings von Heranwachsenden darstellen. Nationale (National Strength and Conditioning Association) sowie internationale (Weltgesundheitsorganisation) gesundheits- und leistungsorientierte Standesgesellschaften haben die positiven Wirkungen von Krafttraining erkannt und in ihre Bewegungsempfehlungen für Kinder und Jugendliche übernommen. KW - muscle strength KW - muscle power KW - strength training KW - children KW - adolescents KW - Maximalkraft KW - Schnellkraft KW - Widerstandstraining KW - Kinder KW - Jugendliche Y1 - 2020 VL - 36 IS - 3 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lesinski, Melanie A1 - Herz, Michael A1 - Schmelcher, Alina A1 - Granacher, Urs T1 - Effects of resistance training on physical fitness in healthy children and adolescents BT - an umbrella review JF - Sports medicine N2 - Background Over the past decades, an exponential growth has occurred with regards to the number of scientific publications including meta-analyses on youth resistance training (RT). Accordingly, it is timely to summarize findings from meta-analyses in the form of an umbrella review. Objectives To systematically review and summarise the findings of published meta-analyses that investigated the effects of RT on physical fitness in children and adolescents. Design Systematic umbrella review of meta-analyses. Data Sources Meta-analyses were identified using systematic literature searches in the databases PubMed, Web of Science, and Cochrane Library. Eligibility Criteria for Selecting Meta-analyses Meta-analyses that examined the effects of RT on physical fitness (e.g., muscle strength, muscle power) in healthy youth (<= 18 years). Results Fourteen meta-analyses were included in this umbrella review. Eleven of these meta-analyses reported between-subject effect sizes which are important to eliminate bias due to growth and maturation. RT produced medium-to-large effects on muscle strength, small-to-large effects on muscle power, small-to-medium effects on linear sprint, a medium effect on agility/change-of-direction speed, small-to-large effects on throwing performance, and a medium effect on sport-specific enhancement. There were few consistent moderating effects of maturation, age, sex, expertise level, or RT type on muscle strength and muscle power across the included meta-analyses. The analysed meta-analyses showed low-to-moderate methodological quality (AMSTAR2) as well as presented evidence of low-to-very low quality (GRADE). Conclusion This umbrella review proved the effectiveness of RT in youth on a high evidence level. The magnitude of effects varies according to the respective outcome measure and it appears to follow the principle of training specificity. Larger effect sizes were found for strength-related outcome measures. Future studies should consistently report data on participants' maturational status. More research is needed with prepubertal children and girls, irrespective of their maturational status. Y1 - 2020 U6 - https://doi.org/10.1007/s40279-020-01327-3 SN - 0112-1642 SN - 1179-2035 VL - 50 IS - 11 SP - 1901 EP - 1928 PB - Springer CY - Northcote ER - TY - JOUR A1 - Lesinski, Melanie A1 - Schmelcher, Alina A1 - Herz, Michael A1 - Puta, Christian A1 - Gabriel, Holger A1 - Arampatzis, Adamantios A1 - Laube, Gunnar A1 - Büsch, Dirk A1 - Granacher, Urs T1 - Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes JF - Plos One N2 - The aim of this study was to establish maturation-, age-, and sex-specific anthropometric and physical fitness percentile reference values of young elite athletes from various sports. Anthropometric (i.e., standing and sitting body height, body mass, body mass index) and physical fitness (i.e., countermovement jump, drop jump, change-of-direction speed [i.e., T-test], trunk muscle endurance [i.e., ventral Bourban test], dynamic lower limbs balance [i.e., Y-balance test], hand grip strength) of 703 male and female elite young athletes aged 8–18 years were collected to aggregate reference values according to maturation, age, and sex. Findings indicate that body height and mass were significantly higher (p<0.001; 0.95≤d≤1.74) in more compared to less mature young athletes as well as with increasing chronological age (p<0.05; 0.66≤d≤3.13). Furthermore, male young athletes were significantly taller and heavier compared to their female counterparts (p<0.001; 0.34≤d≤0.50). In terms of physical fitness, post-pubertal athletes showed better countermovement jump, drop jump, change-of-direction, and handgrip strength performances (p<0.001; 1.57≤d≤8.72) compared to pubertal athletes. Further, countermovement jump, drop jump, change-of-direction, and handgrip strength performances increased with increasing chronological age (p<0.05; 0.29≤d≤4.13). In addition, male athletes outperformed their female counterpart in the countermovement jump, drop jump, change-of-direction, and handgrip strength (p<0.05; 0.17≤d≤0.76). Significant age by sex interactions indicate that sex-specific differences were even more pronounced with increasing age. Conclusively, body height, body mass, and physical fitness increased with increasing maturational status and chronological age. Sex-specific differences appear to be larger as youth grow older. Practitioners can use the percentile values as approximate benchmarks for talent identification and development. KW - biological maturation KW - reliability KW - validity KW - performance KW - physiology KW - maturity KW - injury KW - talent Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0237423 SN - 1932-6203 VL - 15 IS - 8 PB - Plos One CY - San Francisco, California ER - TY - GEN A1 - Lesinski, Melanie A1 - Schmelcher, Alina A1 - Herz, Michael A1 - Puta, Christian A1 - Gabriel, Holger A1 - Arampatzis, Adamantios A1 - Laube, Gunnar A1 - Büsch, Dirk A1 - Granacher, Urs T1 - Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - The aim of this study was to establish maturation-, age-, and sex-specific anthropometric and physical fitness percentile reference values of young elite athletes from various sports. Anthropometric (i.e., standing and sitting body height, body mass, body mass index) and physical fitness (i.e., countermovement jump, drop jump, change-of-direction speed [i.e., T-test], trunk muscle endurance [i.e., ventral Bourban test], dynamic lower limbs balance [i.e., Y-balance test], hand grip strength) of 703 male and female elite young athletes aged 8–18 years were collected to aggregate reference values according to maturation, age, and sex. Findings indicate that body height and mass were significantly higher (p<0.001; 0.95≤d≤1.74) in more compared to less mature young athletes as well as with increasing chronological age (p<0.05; 0.66≤d≤3.13). Furthermore, male young athletes were significantly taller and heavier compared to their female counterparts (p<0.001; 0.34≤d≤0.50). In terms of physical fitness, post-pubertal athletes showed better countermovement jump, drop jump, change-of-direction, and handgrip strength performances (p<0.001; 1.57≤d≤8.72) compared to pubertal athletes. Further, countermovement jump, drop jump, change-of-direction, and handgrip strength performances increased with increasing chronological age (p<0.05; 0.29≤d≤4.13). In addition, male athletes outperformed their female counterpart in the countermovement jump, drop jump, change-of-direction, and handgrip strength (p<0.05; 0.17≤d≤0.76). Significant age by sex interactions indicate that sex-specific differences were even more pronounced with increasing age. Conclusively, body height, body mass, and physical fitness increased with increasing maturational status and chronological age. Sex-specific differences appear to be larger as youth grow older. Practitioners can use the percentile values as approximate benchmarks for talent identification and development. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 662 KW - biological maturation KW - reliability KW - validity KW - performance KW - physiology KW - maturity KW - injury KW - talent Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480268 SN - 1866-8364 IS - 662 ER - TY - GEN A1 - Thiele, Dirk A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Granacher, Urs T1 - Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Strength training is an important means for performance development in young rowers. The purpose of this study was to examine the effects of a 9-week equal volume heavy-resistance strength training (HRST) versus strength endurance training (SET) in addition to regular rowing training on primary (e.g., maximal strength/power) and secondary outcomes (e.g., balance) in young rowers. Twenty-six female elite adolescent rowers were assigned to an HRST (n = 12; age: 13.2 ± 0.5 yrs; maturity-offset: +2.0 ± 0.5 yrs) or a SET group (n = 14; age: 13.1 ± 0.5 yrs; maturity-offset: +2.1 ± 0.5 yrs). HRST and SET comprised lower- (i.e., leg press/knee flexion/extension), upper-limbs (i.e., bench press/pull; lat-pull down), and complex exercises (i.e., rowing ergometer). HRST performed four sets with 12 repetitions per set at an intensity of 75–95% of the one-repetition maximum (1-RM). SET conducted four sets with 30 repetitions per set at 50–60% of the 1-RM. Training volume was matched for overall repetitions × intensity × training per week. Pre-post training, tests were performed for the assessment of primary [i.e., maximal strength (e.g., bench pull/knee flexion/extension 1-RM/isometric handgrip test), muscle power (e.g., medicine-ball push test, triple hop, drop jump, and countermovement jump), anaerobic endurance (400-m run), sport-specific performance (700-m rowing ergometer trial)] and secondary outcomes [dynamic balance (Y-balance test), change-of-direction (CoD) speed (multistage shuttle-run test)]. Adherence rate was >87% and one athlete of each group dropped out. Overall, 24 athletes completed the study and no test or training-related injuries occurred. Significant group × time interactions were observed for maximal strength, muscle power, anaerobic endurance, CoD speed, and sport-specific performance (p ≤ 0.05; 0.45 ≤ d ≤ 1.11). Post hoc analyses indicated larger gains in maximal strength and muscle power following HRST (p ≤ 0.05; 1.81 ≤ d ≤ 3.58) compared with SET (p ≤ 0.05; 1.04 ≤ d ≤ 2.30). Furthermore, SET (p ≤ 0.01; d = 2.08) resulted in larger gains in sport-specific performance compared with HRST (p < 0.05; d = 1.3). Only HRST produced significant pre-post improvements for anaerobic endurance and CoD speed (p ≤ 0.05; 1.84 ≤ d ≤ 4.76). In conclusion, HRST in addition to regular rowing training was more effective than SET to improve selected measures of physical fitness (i.e., maximal strength, muscle power, anaerobic endurance, and CoD speed) and SET was more effective than HRST to enhance sport-specific performance gains in female elite young rowers. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 664 KW - concurrent training KW - plyometric training KW - on-water performance KW - race time KW - oarsmen Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-481961 SN - 1866-8364 IS - 664 ER - TY - JOUR A1 - Thiele, Dirk A1 - Prieske, Olaf A1 - Lesinski, Melanie A1 - Granacher, Urs T1 - Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers JF - Frontiers in Physiology N2 - Strength training is an important means for performance development in young rowers. The purpose of this study was to examine the effects of a 9-week equal volume heavy-resistance strength training (HRST) versus strength endurance training (SET) in addition to regular rowing training on primary (e.g., maximal strength/power) and secondary outcomes (e.g., balance) in young rowers. Twenty-six female elite adolescent rowers were assigned to an HRST (n = 12; age: 13.2 ± 0.5 yrs; maturity-offset: +2.0 ± 0.5 yrs) or a SET group (n = 14; age: 13.1 ± 0.5 yrs; maturity-offset: +2.1 ± 0.5 yrs). HRST and SET comprised lower- (i.e., leg press/knee flexion/extension), upper-limbs (i.e., bench press/pull; lat-pull down), and complex exercises (i.e., rowing ergometer). HRST performed four sets with 12 repetitions per set at an intensity of 75–95% of the one-repetition maximum (1-RM). SET conducted four sets with 30 repetitions per set at 50–60% of the 1-RM. Training volume was matched for overall repetitions × intensity × training per week. Pre-post training, tests were performed for the assessment of primary [i.e., maximal strength (e.g., bench pull/knee flexion/extension 1-RM/isometric handgrip test), muscle power (e.g., medicine-ball push test, triple hop, drop jump, and countermovement jump), anaerobic endurance (400-m run), sport-specific performance (700-m rowing ergometer trial)] and secondary outcomes [dynamic balance (Y-balance test), change-of-direction (CoD) speed (multistage shuttle-run test)]. Adherence rate was >87% and one athlete of each group dropped out. Overall, 24 athletes completed the study and no test or training-related injuries occurred. Significant group × time interactions were observed for maximal strength, muscle power, anaerobic endurance, CoD speed, and sport-specific performance (p ≤ 0.05; 0.45 ≤ d ≤ 1.11). Post hoc analyses indicated larger gains in maximal strength and muscle power following HRST (p ≤ 0.05; 1.81 ≤ d ≤ 3.58) compared with SET (p ≤ 0.05; 1.04 ≤ d ≤ 2.30). Furthermore, SET (p ≤ 0.01; d = 2.08) resulted in larger gains in sport-specific performance compared with HRST (p < 0.05; d = 1.3). Only HRST produced significant pre-post improvements for anaerobic endurance and CoD speed (p ≤ 0.05; 1.84 ≤ d ≤ 4.76). In conclusion, HRST in addition to regular rowing training was more effective than SET to improve selected measures of physical fitness (i.e., maximal strength, muscle power, anaerobic endurance, and CoD speed) and SET was more effective than HRST to enhance sport-specific performance gains in female elite young rowers. KW - concurrent training KW - plyometric training KW - on-water performance KW - race time KW - oarsmen Y1 - 2020 U6 - https://doi.org/10.3389/fphys.2020.00888 SN - 1664-042X VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Chaabene, Helmi A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Performance- and healthrelated benefits of youth resistance training T1 - Leistungs- und gesundheitsbezogene Wirkungen von Krafttraining mit Heranwachsenden T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - There is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths’ exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth. N2 - Die aktuelle Literatur zum Krafttraining mit Kindern und Jugendlichen zeigt eindrücklich, dass ein altersgerechtes und fachlich angeleitetes Krafttraining eine sichere, freudvolle und effektive Maßnahme für die Leistungsentwicklung (z. B. Muskelkraft, Schnellkraft, Sprintgeschwindigkeit) und Gesundheitserhaltung (z. B. Verletzungsprävention) von Heranwachsenden darstellt. Einerseits ist es das Ziel dieses narrativen Übersichtsartikels, die Relevanz der Muskelkraft für die körperliche Entwicklung von Heranwachsenden zu diskutieren. Andererseits sollen aktuelle Befunde zur Effektivität von Krafttraining auf die muskuläre Fitness (Maximal-/Schnellkraft, Kraftausdauer), elementare Bewegungsfertigkeiten (z.B. Springen, Rennen, Werfen) sowie die Verletzungsprävention bei Kindern und Jugendlichen beschrieben werden. Die aktuelle Literatur belegt, dass Krafttraining die Muskelkraft, die Schnellkraft und die Kraftausdauer von Kindern und Jugendlichen unabhängig vom Geschlecht verbessern kann. Weiterhin zeigen Studien, dass trainingsbedingte Verbesserungen der muskulären Fitness auf elementare Bewegungsfertigkeiten transferieren. Diese Wirkungen sind unabhängig vom Alter, der biologischen Reife, dem Trainingsstatus und dem Geschlecht der Trainierenden. Zudem verringert regelmäßiges Krafttraining das Verletzungsrisiko der Heranwachsenden unabhängig von Alter, Geschlecht und Trainingsstatus. Aufgrund dieses breiten Wirkungsspektrums sollte Krafttraining ein elementarer Bestandteil des Trainings von Heranwachsenden darstellen. Nationale (National Strength and Conditioning Association) sowie internationale (Weltgesundheitsorganisation) gesundheits- und leistungsorientierte Standesgesellschaften haben die positiven Wirkungen von Krafttraining erkannt und in ihre Bewegungsempfehlungen für Kinder und Jugendliche übernommen. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 730 KW - muscle strength KW - muscle power KW - strength training KW - children KW - adolescents KW - Maximalkraft KW - Schnellkraft KW - Widerstandstraining KW - Kinder KW - Jugendliche Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526912 SN - 1866-8364 IS - 3 ER -