TY - THES A1 - Sharma, Tripti T1 - Regulation of potassium channels in plants : biophysical mechanisms and physiological implacations Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Sharma, Tripti A1 - Dreyer, Ingo A1 - Riedelsberger, Janin T1 - The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana JF - Frontiers in plant science N2 - Potassium (K+) is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K+ from the soil and its transport to growing organs is essential for a healthy plant development. Uptake and allocation of K+ are performed by K+ channels and transporters belonging to different protein families. In this review we summarize the knowledge on the versatile physiological roles of plant K+ channels and their behavior under stress conditions in the model plant Arabidopsis thaliana. KW - plant potassium channel KW - Shaker KW - TPK KW - K-ir-like KW - Arabidopsis thaliana KW - voltage-dependent KW - voltage-independent Y1 - 2013 U6 - https://doi.org/10.3389/fpls.2013.00224 SN - 1664-462X VL - 4 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Rocchetti, Alessandra A1 - Sharma, Tripti A1 - Wulfetange, Camilla A1 - Scholz-Starke, Joachim A1 - Grippa, Alexandra A1 - Carpaneto, Armando A1 - Dreyer, Ingo A1 - Vitale, Alessandro A1 - Czempinski, Katrin A1 - Pedrazzini, Emanuela T1 - The putative K+ channel subunit AtKCO3 forms stable dimers in arabidopsis JF - Frontiers in plant science N2 - The permeation pore of K+ channels is formed by four copies of the pore domain. AtKCO3 is the only putative voltage-independent K+ channel subunit of Arabidopsis thaliana with a single pore domain. KCO3-like proteins recently emerged in evolution and, to date, have been found only in the genus Arabidopsis (A. thaliana and A. lyrata). We show that the absence of KCO3 does not cause marked changes in growth under various conditions. Only under osmotic stress we observed reduced root growth of the kco3-1 null-allele line. This phenotype was complemented by expressing a KCO3 mutant with an inactive pore, indicating that the function of KCO3 under osmotic stress does not depend on its direct ability to transport ions. Constitutively overexpressed AtKCO3 or AtKCO3::G FP are efficiently sorted to the tonoplast indicating that the protein is approved by the endoplasmic reticulum quality control. However, vacuoles isolated from transgenic plants do not have significant alterations in current density. Consistently, both AtKCO3 and AtKCO3::GFP are detected as homodimers upon velocity gradient centrifugation, an assembly state that would not allow for activity. We conclude that if AtKCO3 ever functions as a K+ channel, active tetramers are held by particularly weak interactions, are formed only in unknown specific conditions and may require partner proteins. KW - Arabidopsis KW - membrane proteins KW - potassium channels KW - protein assembly KW - tonoplast Y1 - 2012 U6 - https://doi.org/10.3389/fpls.2012.00251 SN - 1664-462X VL - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Gajdanowicz, Pawel A1 - Garcia-Mata, Carlos A1 - Gonzalez, Wendy A1 - Morales-Navarro, Samuel Elïas A1 - Sharma, Tripti A1 - Gonzalez-Nilo, Fernando Danilo A1 - Gutowicz, Jan A1 - Müller-Röber, Bernd A1 - Blatt, Michael R. A1 - Dreyer, Ingo T1 - Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity N2 - The family of voltage-gated potassium channels in plants presumably evolved from a common ancestor and includes both inward-rectifying (K-in) channels that allow plant cells to accumulate K+ and outward-rectifying (K-out) channels that mediate K+ efflux. Despite their close structural similarities, the activity of Kin channels is largely independent of K+ and depends only on the transmembrane voltage, whereas that of K-out channels responds to the membrane voltage and the prevailing extracellular K+ concentration. Gating of potassium channels is achieved by structural rearrangements within the last transmembrane domain (S6). Here we investigated the functional equivalence of the S6 helices of the Kin channel KAT1 and the K-out channel SKOR by domain-swapping and site-directed mutagenesis. Channel mutants and chimeras were analyzed after expression in Xenopus oocytes. We identified two discrete regions that influence gating differently in both channels, demonstrating a lack of functional complementarity between KAT1 and SKOR. Our findings are supported by molecular models of KAT1 and SKOR in the open and closed states. The role of the S6 segment in gating evolved differently during specialization of the two channel subclasses, posing an obstacle for the transfer of the K+-sensor from K-out to K-in channels. Y1 - 2009 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0028-646X U6 - https://doi.org/10.1111/j.1469-8137.2008.02749.x SN - 0028-646X ER -