TY - JOUR A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Tomovski, Zivorad T1 - Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise JF - Journal of mathematical physics N2 - We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion. Y1 - 2014 U6 - https://doi.org/10.1063/1.4863478 SN - 0022-2488 SN - 1089-7658 VL - 55 IS - 2 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Sandev, Trifce A1 - Chechkin, Aleksei V. A1 - Korabel, Nickolay A1 - Kantz, Holger A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Distributed-order diffusion equations and multifractality: Models and solutions JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided. Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevE.92.042117 SN - 1539-3755 SN - 1550-2376 VL - 92 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Padash, Amin A1 - Sandev, Trifce A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei T1 - Asymmetric Levy flights are more efficient in random search JF - Fractal and fractional N2 - We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity. KW - asymmetric Levy flights KW - first-arrival density KW - search efficiency Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6050260 SN - 2504-3110 VL - 6 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tomovski, Zivorad A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Dubbeldam, Johan T1 - Generalized space-time fractional diffusion equation with composite fractional time derivative JF - Physica : europhysics journal ; A, Statistical mechanics and its applications N2 - We investigate the solution of space-time fractional diffusion equations with a generalized Riemann-Liouville time fractional derivative and Riesz-Feller space fractional derivative. The Laplace and Fourier transform methods are applied to solve the proposed fractional diffusion equation. The results are represented by using the Mittag-Leffler functions and the Fox H-function. Special cases of the initial and boundary conditions are considered. Numerical scheme and Grunwald-Letnikov approximation are also used to solve the space-time fractional diffusion equation. The fractional moments of the fundamental solution of the considered space-time fractional diffusion equation are obtained. Many known results are special cases of those obtained in this paper. We investigate also the solution of a space-time fractional diffusion equations with a singular term of the form delta(x). t-beta/Gamma(1-beta) (beta > 0). KW - Fractional diffusion equation KW - Composite fractional derivative KW - Riesz-Feller fractional derivative KW - Mittag-Leffler functions KW - Fox H-function KW - Fractional moments KW - Asymptotic expansions KW - Grunwald-Letnikov approximation Y1 - 2012 U6 - https://doi.org/10.1016/j.physa.2011.12.035 SN - 0378-4371 SN - 1873-2119 VL - 391 IS - 8 SP - 2527 EP - 2542 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sandev, Trifce A1 - Tomovski, Zivorad A1 - Dubbeldam, Johan L. A. A1 - Chechkin, Aleksei V. T1 - Generalized diffusion-wave equation with memory kernel JF - Journal of physics : A, Mathematical and theoretical N2 - We study generalized diffusion-wave equation in which the second order time derivative is replaced by an integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We consider different memory kernels of the integro-differential operator, derive corresponding fundamental solutions, specify the conditions of their non-negativity and calculate the mean squared displacement for all cases. In particular, we introduce and study generalized diffusion-wave equations with a regularized Prabhakar derivative of single and distributed orders. The equations considered can be used for modeling the broad spectrum of anomalous diffusion processes and various transitions between different diffusion regimes. KW - diffusion-wave equation KW - Mittag-Leffler function KW - anomalous diffusion Y1 - 2018 U6 - https://doi.org/10.1088/1751-8121/aaefa3 SN - 1751-8113 SN - 1751-8121 VL - 52 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sandev, Trifce A1 - Sokolov, Igor M. A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - Beyond monofractional kinetics JF - Chaos, solitons & fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science N2 - We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple power law form, and thus these equations themselves do not belong to the family of fractional diffusion equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscaling patterns, which correspond either to crossovers between different power laws, or to a non-power-law behavior as exemplified by the logarithmic growth of the width of the distribution. We consider normal and modified forms of these generalized diffusion equations and provide a brief discussion of three generic types of integral kernels for each form, namely, distributed order, truncated power law and truncated distributed order kernels. For each of the cases considered we prove the non-negativity of the solution of the corresponding generalized diffusion equation and calculate the mean squared displacement. (C) 2017 Elsevier Ltd. All rights reserved. KW - Distributed order diffusion-wave equations KW - Complete Bernstein function KW - Completely monotone function Y1 - 2017 U6 - https://doi.org/10.1016/j.chaos.2017.05.001 SN - 0960-0779 SN - 1873-2887 VL - 102 SP - 210 EP - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Sandev, Trifce A1 - Chechkin, Aleksei V. A1 - Kantz, Holger A1 - Metzler, Ralf T1 - Diffusion and fokker-planck-smoluchowski equations with generalized memory kernel JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - We consider anomalous stochastic processes based on the renewal continuous time random walk model with different forms for the probability density of waiting times between individual jumps. In the corresponding continuum limit we derive the generalized diffusion and Fokker-Planck-Smoluchowski equations with the corresponding memory kernels. We calculate the qth order moments in the unbiased and biased cases, and demonstrate that the generalized Einstein relation for the considered dynamics remains valid. The relaxation of modes in the case of an external harmonic potential and the convergence of the mean squared displacement to the thermal plateau are analyzed. KW - continuous time random walk (CTRW) KW - Fokker-Planck-Smoluchowski equation KW - Mittag-Leffler functions KW - anomalous diffusion KW - multi-scaling Y1 - 2015 U6 - https://doi.org/10.1515/fca-2015-0059 SN - 1311-0454 SN - 1314-2224 VL - 18 IS - 4 SP - 1006 EP - 1038 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Sandev, Trifce A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - From continuous time random walks to the generalized diffusion equation JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - We obtain a generalized diffusion equation in modified or Riemann-Liouville form from continuous time random walk theory. The waiting time probability density function and mean squared displacement for different forms of the equation are explicitly calculated. We show examples of generalized diffusion equations in normal or Caputo form that encode the same probability distribution functions as those obtained from the generalized diffusion equation in modified form. The obtained equations are general and many known fractional diffusion equations are included as special cases. KW - continuous time random walk (CTRW) KW - generalized diffusion equation KW - Mittag-Leffler functions KW - anomalous diffusion Y1 - 2018 U6 - https://doi.org/10.1515/fca-2018-0002 SN - 1311-0454 SN - 1314-2224 VL - 21 IS - 1 SP - 10 EP - 28 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Singh, Rishu Kumar A1 - Metzler, Ralf A1 - Sandev, Trifce T1 - Resetting dynamics in a confining potential JF - Journal of physics : A, Mathematical and theoretical N2 - We study Brownian motion in a confining potential under a constant-rate resetting to a reset position x(0). The relaxation of this system to the steady-state exhibits a dynamic phase transition, and is achieved in a light cone region which grows linearly with time. When an absorbing boundary is introduced, effecting a symmetry breaking of the system, we find that resetting aids the barrier escape only when the particle starts on the same side as the barrier with respect to the origin. We find that the optimal resetting rate exhibits a continuous phase transition with critical exponent of unity. Exact expressions are derived for the mean escape time, the second moment, and the coefficient of variation (CV). KW - diffusion KW - resetting KW - barrier escape KW - first-passage Y1 - 2020 U6 - https://doi.org/10.1088/1751-8121/abc83a SN - 1751-8113 SN - 1751-8121 VL - 53 IS - 50 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Sandev, Trifce A1 - Iomin, Alexander A1 - Kantz, Holger A1 - Metzler, Ralf A1 - Chechkin, Aleksei V. T1 - Comb Model with Slow and Ultraslow Diffusion JF - Mathematical modelling of natural phenomena N2 - We consider a generalized diffusion equation in two dimensions for modeling diffusion on a comb-like structures. We analyze the probability distribution functions and we derive the mean squared displacement in x and y directions. Different forms of the memory kernels (Dirac delta, power-law, and distributed order) are considered. It is shown that anomalous diffusion may occur along both x and y directions. Ultraslow diffusion and some more general diffusive processes are observed as well. We give the corresponding continuous time random walk model for the considered two dimensional diffusion-like equation on a comb, and we derive the probability distribution functions which subordinate the process governed by this equation to the Wiener process. KW - comb-like model KW - anomalous diffusion KW - mean squared displacement KW - probability density function Y1 - 2016 U6 - https://doi.org/10.1051/mmnp/201611302 SN - 0973-5348 SN - 1760-6101 VL - 11 SP - 18 EP - 33 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Peng, Junhao A1 - Sandev, Trifce A1 - Kocarev, Ljupco T1 - First encounters on Bethe lattices and Cayley trees JF - Communications in nonlinear science & numerical simulation N2 - In this work we consider the first encounter problems between a fixed and/or mobile target A and a moving trap B on Bethe lattices and Cayley trees. The survival probabilities (SPs) of the target A on the both kinds of structures are considered analytically and compared. On Bethe lattices, the results show that the fixed target will still prolong its survival time, whereas, on Cayley trees, there are some initial positions where the target should move to prolong its survival time. The mean first encounter time (MFET) for mobile target A is evaluated numerically and compared with the mean first passage time (MFPT) for the fixed target A. Different initial settings are addressed and clear boundaries are obtained. These findings are helpful for optimizing the strategy to prolong the survival time of the target or to speed up the search process on Cayley trees, in relation to the target's movement and the initial position configuration of the two walkers. We also present a new method, which uses a small amount of memory, for simulating random walks on Cayley trees. (C) 2020 Elsevier B.V. All rights reserved. KW - Random walks KW - Survival probability KW - Mean first encounter time KW - Bethe KW - lattices KW - Cayley trees Y1 - 2021 U6 - https://doi.org/10.1016/j.cnsns.2020.105594 SN - 1007-5704 SN - 1878-7274 VL - 95 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stojkoski, Viktor A1 - Jolakoski, Petar A1 - Pal, Arnab A1 - Sandev, Trifce A1 - Kocarev, Ljupco A1 - Metzler, Ralf T1 - Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity JF - Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences N2 - We explore the role of non-ergodicity in the relationship between income inequality, the extent of concentration in the income distribution, and income mobility, the feasibility of an individual to change their position in the income rankings. For this purpose, we use the properties of an established model for income growth that includes 'resetting' as a stabilizing force to ensure stationary dynamics. We find that the dynamics of inequality is regime-dependent: it may range from a strictly non-ergodic state where this phenomenon has an increasing trend, up to a stable regime where inequality is steady and the system efficiently mimics ergodicity. Mobility measures, conversely, are always stable over time, but suggest that economies become less mobile in non-ergodic regimes. By fitting the model to empirical data for the income share of the top earners in the USA, we provide evidence that the income dynamics in this country is consistently in a regime in which non-ergodicity characterizes inequality and immobility. Our results can serve as a simple rationale for the observed real-world income dynamics and as such aid in addressing non-ergodicity in various empirical settings across the globe.This article is part of the theme issue 'Kinetic exchange models of societies and economies'. KW - income inequality KW - income mobility KW - geometric Brownian motion KW - non-ergodicity KW - stochastic resetting Y1 - 2022 U6 - https://doi.org/10.1098/rsta.2021.0157 SN - 1364-503X SN - 1471-2962 VL - 380 IS - 2224 PB - Royal Society CY - London ER - TY - JOUR A1 - Stojkoski, Viktor A1 - Sandev, Trifce A1 - Kocarev, Ljupco A1 - Pal, Arnab T1 - Autocorrelation functions and ergodicity in diffusion with stochastic resetting JF - Journal of physics : A, Mathematical and theoretical N2 - Diffusion with stochastic resetting is a paradigm of resetting processes. Standard renewal or master equation approach are typically used to study steady state and other transport properties such as average, mean squared displacement etc. What remains less explored is the two time point correlation functions whose evaluation is often daunting since it requires the implementation of the exact time dependent probability density functions of the resetting processes which are unknown for most of the problems. We adopt a different approach that allows us to write a stochastic solution for a single trajectory undergoing resetting. Moments and the autocorrelation functions between any two times along the trajectory can then be computed directly using the laws of total expectation. Estimation of autocorrelation functions turns out to be pivotal for investigating the ergodic properties of various observables for this canonical model. In particular, we investigate two observables (i) sample mean which is widely used in economics and (ii) time-averaged-mean-squared-displacement (TAMSD) which is of acute interest in physics. We find that both diffusion and drift-diffusion processes with resetting are ergodic at the mean level unlike their reset-free counterparts. In contrast, resetting renders ergodicity breaking in the TAMSD while both the stochastic processes are ergodic when resetting is absent. We quantify these behaviors with detailed analytical study and corroborate with extensive numerical simulations. Our results can be verified in experimental set-ups that can track single particle trajectories and thus have strong implications in understanding the physics of resetting. KW - autocorrelations KW - ergodicity KW - diffusion KW - stochastic resetting Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac4ce9 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 10 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Petreska, Irina A1 - Sandev, Trifce A1 - Lenzi, Ervin Kaminski T1 - Comb-like geometric constraints leading to emergence of the time-fractional Schrödinger equation JF - Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics N2 - This paper presents an overview over several examples, where the comb-like geometric constraints lead to emergence of the time-fractional Schrodinger equation. Motion of a quantum object on a comb structure is modeled by a suitable modification of the kinetic energy operator, obtained by insertion of the Dirac delta function in the Laplacian. First, we consider motion of a free particle on two- and three-dimensional comb structures, and then we extend the study to the interacting cases. A general form of a nonlocal term, which describes the interactions of the particle with the medium, is included in the Hamiltonian, and later on, the cases of constant and Dirac delta potentials are analyzed. At the end, we discuss the case of non-integer dimensions, considering separately the case of fractal dimension between one and two, and the case of fractal dimension between two and three. All these examples show that even though we are starting with the standard time-dependent Schrodinger equation on a comb, the time-fractional equation for the Green's functions appears, due to these specific geometric constraints. KW - Comb model KW - time-fractional Schrödinger equation KW - Green’ s functions Y1 - 2021 U6 - https://doi.org/10.1142/S0217732321300056 SN - 0217-7323 SN - 1793-6632 VL - 36 IS - 14 PB - World Scientific CY - Singapore ER -