TY - JOUR A1 - Maghsoudi, Samira A1 - Cesca, Simone A1 - Hainzl, Sebastian A1 - Kaiser, Diethelm A1 - Becker, Dirk A1 - Dahm, Torsten T1 - Improving the estimation of detection probability and magnitude of completeness in strongly heterogeneous media, an application to acoustic emission (AE) JF - Geophysical journal international N2 - Reliable estimations of magnitude of completeness (M-c) are essential for a correct interpretation of seismic catalogues. The spatial distribution of M-c may be strongly variable and difficult to assess in mining environments, owing to the presence of galleries, cavities, fractured regions, porous media and different mineralogical bodies, as well as in consequence of inhomogeneous spatial distribution of the seismicity. We apply a 3-D modification of the probabilistic magnitude of completeness (PMC) method, which relies on the analysis of network detection capabilities. In our approach, the probability to detect an event depends on its magnitude, source receiver Euclidian distance and source receiver direction. The suggested method is proposed for study of the spatial distribution of the magnitude of completeness in a mining environment and here is applied to a 2-months acoustic emission (AE) data set recorded at the Morsleben salt mine, Germany. The dense seismic network and the large data set, which includes more than one million events, enable a detailed testing of the method. This method is proposed specifically for strongly heterogeneous media. Besides, it can also be used for specific network installations, with sensors with a sensitivity, dependent on the direction of the incoming wave (e.g. some piezoelectric sensors). In absence of strong heterogeneities, the standards PMC approach should be used. We show that the PMC estimations in mines strongly depend on the source receiver direction, and cannot be correctly accounted using a standard PMC approach. However, results can be improved, when adopting the proposed 3-D modification of the PMC method. Our analysis of one central horizontal and vertical section yields a magnitude of completeness of about M-c approximate to 1 (AE magnitude) at the centre of the network, which increases up to M-c approximate to 4 at further distances outside the network; the best detection performance is estimated for a NNE-SSE elongated region, which corresponds to the strike direction of the low-attenuating salt body. Our approach provides us with small-scale details about the capability of sensors to detect an earthquake, which can be linked to the presence of heterogeneities in specific directions. Reduced detection performance in presence of strong structural heterogeneities (cavities) is confirmed by synthetic waveform modelling in heterogeneous media. KW - Seismic attenuation KW - Statistical seismology Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt049 SN - 0956-540X VL - 193 IS - 3 SP - 1556 EP - 1569 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Maghsoudi, Samira A1 - Hainzl, Sebastian A1 - Cesca, Simone A1 - Dahm, Torsten A1 - Kaiser, Diethelm T1 - Identification and characterization of growing large-scale en-echelon fractures in a salt mine JF - Geophysical journal international N2 - The spatiotemporal seismicity of acoustic emission (AE) events recorded in the Morsleben salt mine is investigated. Almost a year after backfilling of the cavities from 2003, microevents are distributed with distinctive stripe shapes above cavities at different depth levels. The physical forces driving the creation of these stripes are still unknown. This study aims to find the active stripes and track fracture developments over time by combining two different temporal and spatial clustering techniques into a single methodological approach. Anomalous seismicity parameters values like sharp b-value changes for two active stripes are good indicators to explain possible stress accumulation at the stripe tips. We identify the formation of two new seismicity stripes and show that the AE activities in active clusters are migrated mostly unidirectional to eastward and upward. This indicates that the growth of underlying macrofractures is controlled by the gradient of extensional stress. Studying size distribution characteristic in terms of frequency-magnitude distribution and b-value in active phase and phase with constant seismicity rate show that deviations from the Gutenberg-Richter power law can be explained by the inclusion of different activity phases: (1) the inactive period before the formation of macrofractures, which is characterized by a deficit of larger events (higher b-values) and (2) the period of fracture growth characterized by the occurrence of larger events (smaller b-values). KW - Earthquake source observations KW - Statistical seismology Y1 - 2014 U6 - https://doi.org/10.1093/gji/ggt443 SN - 0956-540X SN - 1365-246X VL - 196 IS - 2 SP - 1092 EP - 1105 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Passarelli, Luigi A1 - Hainzl, Sebastian A1 - Cesca, Simone A1 - Maccaferri, Francesco A1 - Mucciarelli, Marco A1 - Rößler, Dirk A1 - Corbi, Fabio A1 - Dahm, Torsten A1 - Rivalta, Eleonora T1 - Aseismic transient driving the swarm-like seismic sequence in the Pollino range, Southern Italy JF - Geophysical journal international N2 - Tectonic earthquake swarms challenge our understanding of earthquake processes since it is difficult to link observations to the underlying physical mechanisms and to assess the hazard they pose. Transient forcing is thought to initiate and drive the spatio-temporal release of energy during swarms. The nature of the transient forcing may vary across sequences and range from aseismic creeping or transient slip to diffusion of pore pressure pulses to fluid redistribution and migration within the seismogenic crust. Distinguishing between such forcing mechanisms may be critical to reduce epistemic uncertainties in the assessment of hazard due to seismic swarms, because it can provide information on the frequency-magnitude distribution of the earthquakes (often deviating from the assumed Gutenberg-Richter relation) and on the expected source parameters influencing the ground motion (for example the stress drop). Here we study the ongoing Pollino range (Southern Italy) seismic swarm, a long-lasting seismic sequence with more than five thousand events recorded and located since October 2010. The two largest shocks (magnitude M-w = 4.2 and M-w = 5.1) are among the largest earthquakes ever recorded in an area which represents a seismic gap in the Italian historical earthquake catalogue. We investigate the geometrical, mechanical and statistical characteristics of the largest earthquakes and of the entire swarm. We calculate the focal mechanisms of the M-l > 3 events in the sequence and the transfer of Coulomb stress on nearby known faults and analyse the statistics of the earthquake catalogue. We find that only 25 per cent of the earthquakes in the sequence can be explained as aftershocks, and the remaining 75 per cent may be attributed to a transient forcing. The b-values change in time throughout the sequence, with low b-values correlated with the period of highest rate of activity and with the occurrence of the largest shock. In the light of recent studies on the palaeoseismic and historical activity in the Pollino area, we identify two scenarios consistent with the observations and our analysis: This and past seismic swarms may have been 'passive' features, with small fault patches failing on largely locked faults, or may have been accompanied by an 'active', largely aseismic, release of a large portion of the accumulated tectonic strain. Those scenarios have very different implications for the seismic hazard of the area. KW - Seismicity and tectonics KW - Statistical seismology KW - Dynamics: seismotectonics Y1 - 2015 U6 - https://doi.org/10.1093/gji/ggv111 SN - 0956-540X SN - 1365-246X VL - 201 IS - 3 SP - 1553 EP - 1567 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Passarelli, Luigi A1 - Hainzl, Sebastian A1 - Cesca, Simone A1 - Maccaferri, Francesco A1 - Mucciarelli, Marco A1 - Roessler, Dirk A1 - Corbi, Fabio A1 - Dahm, Torsten A1 - Rivalta, Eleonora T1 - Aseismic transient driving the swarm-like seismic sequence in the Pollino range, Southern Italy (vol 201, pg 1553, 2015) T2 - Geophysical journal international KW - Seismicity and tectonics KW - Statistical seismology KW - Dynamics: seismotectonics Y1 - 2016 U6 - https://doi.org/10.1093/gji/ggv425 SN - 0956-540X SN - 1365-246X VL - 204 SP - 365 EP - 365 PB - Oxford Univ. Press CY - Oxford ER -