TY - GEN A1 - Al-Halbouni, Djamil A1 - Holohan, Eoghan P. A1 - Taheri, Abbas A1 - Schöpfer, Martin P. J. A1 - Emam, Sacha A1 - Dahm, Torsten T1 - Geomechanical modelling of sinkhole development using distinct elements BT - model verification for a single void space and application to the Dead Sea area T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mechanical and/or chemical removal of material from the subsurface may generate large subsurface cavities, the destabilisation of which can lead to ground collapse and the formation of sinkholes. Numerical simulation of the interaction of cavity growth, host material deformation and overburden collapse is desirable to better understand the sinkhole hazard but is a challenging task due to the involved high strains and material discontinuities. Here, we present 2-D distinct element method numerical simulations of cavity growth and sinkhole development. Firstly, we simulate cavity formation by quasi-static, stepwise removal of material in a single growing zone of an arbitrary geometry and depth. We benchmark this approach against analytical and boundary element method models of a deep void space in a linear elastic material. Secondly, we explore the effects of properties of different uniform materials on cavity stability and sinkhole development. We perform simulated biaxial tests to calibrate macroscopic geotechnical parameters of three model materials representative of those in which sinkholes develop at the Dead Sea shoreline: mud, alluvium and salt. We show that weak materials do not support large cavities, leading to gradual sagging or suffusion-style subsidence. Strong materials support quasi-stable to stable cavities, the overburdens of which may fail suddenly in a caprock or bedrock collapse style. Thirdly, we examine the consequences of layered arrangements of weak and strong materials. We find that these are more susceptible to sinkhole collapse than uniform materials not only due to a lower integrated strength of the overburden but also due to an inhibition of stabilising stress arching. Finally, we compare our model sinkhole geometries to observations at the Ghor Al-Haditha sinkhole site in Jordan. Sinkhole depth ∕ diameter ratios of 0.15 in mud, 0.37 in alluvium and 0.33 in salt are reproduced successfully in the calibrated model materials. The model results suggest that the observed distribution of sinkhole depth ∕ diameter values in each material type may partly reflect sinkhole growth trends. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1061 KW - rock mass KW - karst KW - dissolution KW - reflection KW - subsidence KW - subrosion KW - collapse KW - simulation KW - scale KW - fault Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468435 SN - 1866-8372 IS - 1061 ER - TY - JOUR A1 - Nooshiri, Nima A1 - Bean, Christopher J. A1 - Dahm, Torsten A1 - Grigoli, Francesco A1 - Kristjansdottir, Sigriour A1 - Obermann, Anne A1 - Wiemer, Stefan T1 - A multibranch, multitarget neural network for rapid point-source inversion in a microseismic environment BT - examples from the Hengill Geothermal Field, Iceland JF - Geophysical journal international N2 - Despite advanced seismological techniques, automatic source characterization for microseismic earthquakes remains difficult and challenging since current inversion and modelling of high-frequency signals are complex and time consuming. For real-time applications such as induced seismicity monitoring, the application of standard methods is often not fast enough for true complete real-time information on seismic sources. In this paper, we present an alternative approach based on recent advances in deep learning for rapid source-parameter estimation of microseismic earthquakes. The seismic inversion is represented in compact form by two convolutional neural networks, with individual feature extraction, and a fully connected neural network, for feature aggregation, to simultaneously obtain full moment tensor and spatial location of microseismic sources. Specifically, a multibranch neural network algorithm is trained to encapsulate the information about the relationship between seismic waveforms and underlying point-source mechanisms and locations. The learning-based model allows rapid inversion (within a fraction of second) once input data are available. A key advantage of the algorithm is that it can be trained using synthetic seismic data only, so it is directly applicable to scenarios where there are insufficient real data for training. Moreover, we find that the method is robust with respect to perturbations such as observational noise and data incompleteness (missing stations). We apply the new approach on synthesized and example recorded small magnitude (M <= 1.6) earthquakes at the Hellisheioi geothermal field in the Hengill area, Iceland. For the examined events, the model achieves excellent performance and shows very good agreement with the inverted solutions determined through standard methodology. In this study, we seek to demonstrate that this approach is viable for microseismicity real-time estimation of source parameters and can be integrated into advanced decision-support tools for controlling induced seismicity. KW - Neural networks KW - fuzzy logic KW - Computational seismology KW - Induced seismicity KW - Earthquake source observations Y1 - 2021 U6 - https://doi.org/10.1093/gji/ggab511 SN - 0956-540X SN - 1365-246X VL - 229 IS - 2 SP - 999 EP - 1016 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zang, Arno A1 - Stephansson, Ove A1 - Stenberg, Leif A1 - Plenkers, Katrin A1 - von Specht, Sebastian A1 - Milkereit, Claus A1 - Schill, Eva A1 - Kwiatek, Grzegorz A1 - Dresen, Georg A1 - Zimmermann, Günter A1 - Dahm, Torsten A1 - Weber, Michael T1 - Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array JF - Geophysical journal international N2 - In this paper, an underground experiment at the Aspo Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Aspo HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Avro granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization. KW - Geomechanics KW - Fracture and flow KW - Broad-band seismometers Y1 - 2016 SN - 0956-540X SN - 1365-246X VL - 208 SP - 790 EP - 813 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Kriegerowski, Marius A1 - Cesca, Simone A1 - Ohrnberger, Matthias A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Event couple spectral ratio Q method for earthquake clusters BT - application to northwest Bohemia T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - We develop an amplitude spectral ratio method for event couples from clustered earthquakes to estimate seismic wave attenuation (Q-1) in the source volume. The method allows to study attenuation within the source region of earthquake swarms or aftershocks at depth, independent of wave path and attenuation between source region and surface station. We exploit the high-frequency slope of phase spectra using multitaper spectral estimates. The method is tested using simulated full wave-field seismograms affected by recorded noise and finite source rupture. The synthetic tests verify the approach and show that solutions are independent of focal mechanisms but also show that seismic noise may broaden the scatter of results. We apply the event couple spectral ratio method to northwest Bohemia, Czech Republic, a region characterized by the persistent occurrence of earthquake swarms in a confined source region at mid-crustal depth. Our method indicates a strong anomaly of high attenuation in the source region of the swarm with an averaged attenuation factor of Qp < 100. The application to S phases fails due to scattered P-phase energy interfering with S phases. The Qp anomaly supports the common hypothesis of highly fractured and fluid saturated rocks in the source region of the swarms in northwest Bohemia. However, high temperatures in a small volume around the swarms cannot be excluded to explain our observations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 683 KW - west bohemia KW - attenuation tomography KW - swarm earthquakes KW - focal zone KW - parameters KW - locations KW - fault Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426029 IS - 683 ER - TY - GEN A1 - Polom, Ulrich A1 - Alrshdan, Hussam A1 - Al-Halbouni, Djamil A1 - Holohan, Eoghan P. A1 - Dahm, Torsten A1 - Sawarieh, Ali A1 - Atallah, Mohamad Y. A1 - Krawczyk, Charlotte M. T1 - Shear wave reflection seismic yields subsurface dissolution and subrosion patterns BT - application to the Ghor Al-Haditha sinkhole site, Dead Sea, Jordan T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Near-surface geophysical imaging of alluvial fan settings is a challenging task but crucial for understating geological processes in such settings. The alluvial fan of Ghor Al-Haditha at the southeast shore of the Dead Sea is strongly affected by localized subsidence and destructive sinkhole collapses, with a significantly increasing sinkhole formation rate since ca. 1983. A similar increase is observed also on the western shore of the Dead Sea, in correlation with an ongoing decline in the Dead Sea level. Since different structural models of the upper 50 m of the alluvial fan and varying hypothetical sinkhole processes have been suggested for the Ghor Al-Haditha area in the past, this study aimed to clarify the subsurface characteristics responsible for sinkhole development. For this purpose, high-frequency shear wave reflection vibratory seismic surveys were carried out in the Ghor Al-Haditha area along several crossing and parallel profiles with a total length of 1.8 and 2.1 km in 2013 and 2014, respectively. The sedimentary architecture of the alluvial fan at Ghor Al-Haditha is resolved down to a depth of nearly 200 m at a high resolution and is calibrated with the stratigraphic profiles of two boreholes located inside the survey area. The most surprising result of the survey is the absence of evidence of a thick (> 2–10 m) compacted salt layer formerly suggested to lie at ca. 35–40 m depth. Instead, seismic reflection amplitudes and velocities image with good continuity a complex interlocking of alluvial fan deposits and lacustrine sediments of the Dead Sea between 0 and 200 m depth. Furthermore, the underground section of areas affected by sinkholes is characterized by highly scattering wave fields and reduced seismic interval velocities. We propose that the Dead Sea mud layers, which comprise distributed inclusions or lenses of evaporitic chloride, sulfate, and carbonate minerals as well as clay silicates, become increasingly exposed to unsaturated water as the sea level declines and are consequently destabilized and mobilized by both dissolution and physical erosion in the subsurface. This new interpretation of the underlying cause of sinkhole development is supported by surface observations in nearby channel systems. Overall, this study shows that shear wave seismic reflection technique is a promising method for enhanced near-surface imaging in such challenging alluvial fan settings. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 979 KW - salt dissolution KW - hazard KW - coast KW - area KW - subsidence KW - shoreline KW - karst KW - lake Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459134 SN - 1866-8372 IS - 979 SP - 1079 EP - 1098 ER - TY - JOUR A1 - Pirli, Myrto A1 - Hainzl, Sebastian A1 - Schweitzer, Johannes A1 - Köhler, Andreas A1 - Dahm, Torsten T1 - Localised thickening and grounding of an Antarctic ice shelf from tidal triggering and sizing of cryoseismicity JF - Earth & planetary science letters N2 - We observe remarkably periodic patterns of seismicity rates and magnitudes at the Fimbul Ice Shelf, East Antarctica, correlating with the cycles of the ocean tide. Our analysis covers 19 years of continuous seismic recordings from Antarctic broadband stations. Seismicity commences abruptly during austral summer 2011 at a location near the ocean front in a shallow water region. Dozens of highly repetitive events occur in semi-diurnal cycles, with magnitudes and rates fluctuating steadily with the tide. In contrast to the common unpredictability of earthquake magnitudes, the event magnitudes show deterministic trends within single cycles and strong correlations with spring tides and tide height. The events occur quasi-periodically and the highly constrained event sources migrate landwards during rising tide. We show that a simple, mechanical model can explain most of the observations. Our model assumes stick-slip motion on a patch of grounded ice shelf, which is forced by the variations of the ocean-tide height and ice flow. The well fitted observations give new insights into the general process of frictional triggering of earthquakes, while providing independent evidence of variations in ice shelf thickness and grounding. KW - tidally modulated cryogenic seismicity KW - stick-slip motion KW - event recurrence predictability KW - ice-shelf thickness KW - ice-shelf grounding KW - East Antarctica Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2018.09.024 SN - 0012-821X SN - 1385-013X VL - 503 SP - 78 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dahm, Torsten A1 - Kuehn, Daniela A1 - Ohrnberger, Matthias A1 - Kroeger, Jens A1 - Wiederhold, Helga A1 - Reuther, Claus-Dieter A1 - Dehghani, Ali A1 - Scherbaum, Frank T1 - Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments : application to Hamburg, Germany N2 - Shallowly situated evaporites in built-up areas are of relevance for urban and cultural development and hydrological regulation. The hazard of sinkholes, subrosion depressions and gypsum karst is often difficult to evaluate and may quickly change with anthropogenic influence. The geophysical exploration of evaporites in metropolitan areas is often not feasible with active industrial techniques. We collect and combine different passive geophysical data as microgravity, ambient vibrations, deformation and hydrological information to study the roof morphology of shallow evaporites beneath Hamburg, Northern Germany. The application of a novel gravity inversion technique leads to a 3-D depth model of the salt diapir under study. We compare the gravity-based depth model to pseudo-depths from H/V measurements and depth estimates from small-scale seismological array data. While the general range and trend of the diapir roof is consistent, a few anomalous regions are identified where H/V pseudo-depths indicate shallower structures not observed in gravity or array data. These are interpreted by shallow residual caprock floaters and zones of increased porosity. The shallow salt structure clearly correlates with a relative subsidence in the order of 2 mm yr(-1). The combined interpretation of roof morphology, yearly subsidence rates, chemical analyses of groundwater and of hydraulic head in aquifers indicates that the salt diapir beneath Hamburg is subject to significant ongoing dissolution that may possibly affect subrosion depressions, sinkhole distribution and land usage. The combined analysis of passive geophysical data may be exemplary for the study of shallow evaporites beneath other urban areas. Y1 - 2010 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2010.04521.x SN - 0956-540X ER - TY - JOUR A1 - Niemz, Peter A1 - Dahm, Torsten A1 - Milkereit, Claus A1 - Cesca, Simone A1 - Petersen, Gesa Maria A1 - Zang, Arno T1 - Insights into hydraulic fracture growth gained from a joint analysis of seismometer-derived tilt signals and scoustic emissions JF - Journal of geophysical research : Solid earth N2 - Hydraulic fracturing is performed to enhance rock permeability, for example, in the frame of geothermal energy production or shale gas exploitation, and can potentially trigger induced seismicity. The tracking of increased permeabilities and the fracturing extent is often based on the microseismic event distribution within the stimulated rock volume, but it is debated whether the microseismic activity adequately depicts the fracture formation. We are able to record tilt signals that appear as long-period transients (<180 s) on two broadband seismometers installed close (17-72 m) to newly formed, meter-scale hydraulic fractures. With this observation, we can overcome the limitations of the microseismic monitoring alone and verify the fracture mapping. Our analysis for the first time combines a catalog of previously analyzed acoustic emissions ([AEs] durations of 20 ms), indirectly mapping the fractures, with unique tilt signals, that provide independent, direct insights into the deformation of the rock. The analysis allows to identify different phases of the fracturing process including the (re)opening, growth, and aftergrowth of fractures. Further, it helps to differentiate between the formation of complex fracture networks and single macrofractures, and it validates the AE fracture mapping. Our findings contribute to a better understanding of the fracturing processes, which may help to reduce fluid-injection-induced seismicity and validate efficient fracture formation.
Plain Language Summary Hydraulic fracturing (HF) describes the opening of fractures in rocks by injecting fluids under high pressure. The new fractures not only can facilitate the extraction of shale gas but can also be used to heat up water in the subsurface in enhanced geothermal systems, a corner stone of renewable energy production. The fracture formation is inherently accompanied by small, nonfelt earthquakes (microseismic events). Occasionally, larger events felt by the population can be induced by the subsurface operations. Avoiding such events is important for the acceptance of HF operations and requires a detailed knowledge about the fracture formation. We jointly analyze two very different data sets recorded during mine-scale HF experiments: (a) the tilting of the ground caused by the opening of the fractures, as recorded by broadband seismometers-usually deployed for earthquake monitoring-installed close to the experiments and (b) a catalog of acoustic emissions, seismic signals of few milliseconds emitted by tiny cracks around the forming hydraulic fracture. The novel joint analysis allows to characterize the fracturing processes in greater detail, contributing to the understanding of the physical processes, which may help to understand fluid-injection-induced seismicity and validate the formation of hydraulic fractures. KW - hydraulic fracturing KW - fracture growth KW - tilt KW - acoustic emissions KW - injections KW - broadband seismometer Y1 - 2021 U6 - https://doi.org/10.1029/2021JB023057 SN - 2169-9313 SN - 2169-9356 VL - 126 IS - 12 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten A1 - Hannemann, Katrin T1 - Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array JF - Geophysical journal international N2 - A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity. KW - body waves KW - earthquake source observations KW - seismicity and tectonics Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa054 SN - 0956-540X SN - 1365-246X VL - 221 IS - 2 SP - 1055 EP - 1080 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten T1 - Higher degree moment inversin using far-field broad-band recordings : theory and evaluation of the method with application to the 1994 Bolivia deep earthauke Y1 - 1999 ER -