TY - JOUR A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Tree-based flood damage modeling of companies: Damage processes and model performance JF - Water resources research N2 - Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data. Y1 - 2017 U6 - https://doi.org/10.1002/2017WR020784 SN - 0043-1397 SN - 1944-7973 VL - 53 SP - 6050 EP - 6068 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Seamless Estimation of Hydrometeorological Risk Across Spatial Scales T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 743 KW - spatial scales KW - risk assessment KW - hydro-meterological hazards KW - object-based damage modeling KW - uncertainty KW - probabilistic approaches Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435341 SN - 1866-8372 IS - 743 SP - 574 EP - 581 ER - TY - JOUR A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Seamless Estimation of Hydrometeorological Risk Across Spatial Scales JF - Earth's Future N2 - Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data. KW - spatial scales KW - risk assessment KW - hydro-meterological hazards KW - object-based damage modeling KW - uncertainty KW - probabilistic approaches Y1 - 2019 U6 - https://doi.org/10.1029/2018EF001122 SN - 2328-4277 VL - 7 IS - 5 SP - 574 EP - 581 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - THES A1 - Sieg, Tobias T1 - Reliability of flood damage estimations across spatial scales T1 - Verlässlichkeit von Hochwasserschadensschätzungen über räumliche Skalen N2 - Extreme Naturereignisse sind ein integraler Bestandteil der Natur der Erde. Sie werden erst dann zu Gefahren für die Gesellschaft, wenn sie diesen Ereignissen ausgesetzt ist. Dann allerdings können Naturgefahren verheerende Folgen für die Gesellschaft haben. Besonders hydro-meteorologische Gefahren wie zum Beispiel Flusshochwasser, Starkregenereignisse, Winterstürme, Orkane oder Tornados haben ein hohes Schadenspotential und treten rund um den Globus auf. Einhergehend mit einer immer wärmer werdenden Welt, werden auch Extremwetterereignisse, welche potentiell Naturgefahren auslösen können, immer wahrscheinlicher. Allerdings trägt nicht nur eine sich verändernde Umwelt zur Erhöhung des Risikos von Naturgefahren bei, sondern auch eine sich verändernde Gesellschaft. Daher ist ein angemessenes Risikomanagement erforderlich um die Gesellschaft auf jeder räumlichen Ebene an diese Veränderungen anzupassen. Ein essentieller Bestandteil dieses Managements ist die Abschätzung der ökonomischen Auswirkungen der Naturgefahren. Bisher allerdings fehlen verlässliche Methoden um die Auswirkungen von hydro-meteorologischen Gefahren abzuschätzen. Ein Hauptbestandteil dieser Arbeit ist daher die Entwicklung und Anwendung einer neuen Methode, welche die Verlässlichkeit der Schadensschätzung verbessert. Die Methode wurde beispielhaft zur Schätzung der ökonomischen Auswirkungen eines Flusshochwassers auf einzelne Unternehmen bis hin zu den Auswirkungen auf das gesamte Wirtschaftssystem Deutschlands erfolgreich angewendet. Bestehende Methoden geben meist wenig Information über die Verlässlichkeit ihrer Schätzungen. Da diese Informationen Entscheidungen zur Anpassung an das Risiko erleichtern, wird die Verlässlichkeit der Schadensschätzungen mit der neuen Methode dargestellt. Die Verlässlichkeit bezieht sich dabei nicht nur auf die Schadensschätzung selber, sondern auch auf die Annahmen, die über betroffene Gebäude gemacht werden. Nach diesem Prinzip kann auch die Verlässlichkeit von Annahmen über die Zukunft dargestellt werden, dies ist ein wesentlicher Aspekt für Prognosen. Die Darstellung der Verlässlichkeit und die erfolgreiche Anwendung zeigt das Potential der Methode zur Verwendung von Analysen für gegenwärtige und zukünftige hydro-meteorologische Gefahren. N2 - Natural extreme events are an integral part of nature on planet earth. Usually these events are only considered hazardous to humans, in case they are exposed. In this case, however, natural hazards can have devastating impacts on human societies. Especially hydro-meteorological hazards have a high damage potential in form of e.g. riverine and pluvial floods, winter storms, hurricanes and tornadoes, which can occur all over the globe. Along with an increasingly warm climate also an increase in extreme weather which potentially triggers natural hazards can be expected. Yet, not only changing natural systems, but also changing societal systems contribute to an increasing risk associated with these hazards. These can comprise increasing exposure and possibly also increasing vulnerability to the impacts of natural events. Thus, appropriate risk management is required to adapt all parts of society to existing and upcoming risks at various spatial scales. One essential part of risk management is the risk assessment including the estimation of the economic impacts. However, reliable methods for the estimation of economic impacts due to hydro-meteorological hazards are still missing. Therefore, this thesis deals with the question of how the reliability of hazard damage estimates can be improved, represented and propagated across all spatial scales. This question is investigated using the specific example of economic impacts to companies as a result of riverine floods in Germany. Flood damage models aim to describe the damage processes during a given flood event. In other words they describe the vulnerability of a specific object to a flood. The models can be based on empirical data sets collected after flood events. In this thesis tree-based models trained with survey data are used for the estimation of direct economic flood impacts on the objects. It is found that these machine learning models, in conjunction with increasing sizes of data sets used to derive the models, outperform state-of-the-art damage models. However, despite the performance improvements induced by using multiple variables and more data points, large prediction errors remain at the object level. The occurrence of the high errors was explained by a further investigation using distributions derived from tree-based models. The investigation showed that direct economic impacts to individual objects cannot be modeled by a normal distribution. Yet, most state-of-the-art approaches assume a normal distribution and take mean values as point estimators. Subsequently, the predictions are unlikely values within the distributions resulting in high errors. At larger spatial scales more objects are considered for the damage estimation. This leads to a better fit of the damage estimates to a normal distribution. Consequently, also the performance of the point estimators get better, although large errors can still occur due to the variance of the normal distribution. It is recommended to use distributions instead of point estimates in order to represent the reliability of damage estimates. In addition current approaches also mostly ignore the uncertainty associated with the characteristics of the hazard and the exposed objects. For a given flood event e.g. the estimation of the water level at a certain building is prone to uncertainties. Current approaches define exposed objects mostly by the use of land use data sets. These data sets often show inconsistencies, which introduce additional uncertainties. Furthermore, state-of-the-art approaches also imply problems of missing consistency when predicting the damage at different spatial scales. This is due to the use of different types of exposure data sets for model derivation and application. In order to face these issues a novel object-based method was developed in this thesis. The method enables a seamless estimation of hydro-meteorological hazard damage across spatial scales including uncertainty quantification. The application and validation of the method resulted in plausible estimations at all spatial scales without overestimating the uncertainty. Mainly newly available data sets containing individual buildings make the application of the method possible as they allow for the identification of flood affected objects by overlaying the data sets with water masks. However, the identification of affected objects with two different water masks revealed huge differences in the number of identified objects. Thus, more effort is needed for their identification, since the number of objects affected determines the order of magnitude of the economic flood impacts to a large extent. In general the method represents the uncertainties associated with the three components of risk namely hazard, exposure and vulnerability, in form of probability distributions. The object-based approach enables a consistent propagation of these uncertainties in space. Aside from the propagation of damage estimates and their uncertainties across spatial scales, a propagation between models estimating direct and indirect economic impacts was demonstrated. This enables the inclusion of uncertainties associated with the direct economic impacts within the estimation of the indirect economic impacts. Consequently, the modeling procedure facilitates the representation of the reliability of estimated total economic impacts. The representation of the estimates' reliability prevents reasoning based on a false certainty, which might be attributed to point estimates. Therefore, the developed approach facilitates a meaningful flood risk management and adaptation planning. The successful post-event application and the representation of the uncertainties qualifies the method also for the use for future risk assessments. Thus, the developed method enables the representation of the assumptions made for the future risk assessments, which is crucial information for future risk management. This is an important step forward, since the representation of reliability associated with all components of risk is currently lacking in all state-of-the-art methods assessing future risk. In conclusion, the use of object-based methods giving results in the form of distributions instead of point estimations is recommended. The improvement of the model performance by the means of multi-variable models and additional data points is possible, but small. Uncertainties associated with all components of damage estimation should be included and represented within the results. Furthermore, the findings of the thesis suggest that, at larger scales, the influence of the uncertainty associated with the vulnerability is smaller than those associated with the hazard and exposure. This leads to the conclusion that for an increased reliability of flood damage estimations and risk assessments, the improvement and active inclusion of hazard and exposure, including their uncertainties, is needed in addition to the improvements of the models describing the vulnerability of the objects. KW - hydro-meteorological risk KW - damage modeling KW - uncertainty KW - probabilistic approach KW - economic impacts KW - OpenStreetMap KW - hydro-meteorologische Risiken KW - Schadensmodellierung KW - Unsicherheiten KW - probabilistischer Ansatz KW - ökonomische Auswirkungen KW - OpenStreetMap Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426161 ER - TY - JOUR A1 - Sairam, Nivedita A1 - Brill, Fabio Alexander A1 - Sieg, Tobias A1 - Farrag, Mostafa A1 - Kellermann, Patric A1 - Viet Dung Nguyen, A1 - Lüdtke, Stefan A1 - Merz, Bruno A1 - Schröter, Kai A1 - Vorogushyn, Sergiy A1 - Kreibich, Heidi T1 - Process-based flood risk assessment for Germany JF - Earth's future / American Geophysical Union N2 - Large-scale flood risk assessments are crucial for decision making, especially with respect to new flood defense schemes, adaptation planning and estimating insurance premiums. We apply the process-based Regional Flood Model (RFM) to simulate a 5000-year flood event catalog for all major catchments in Germany and derive risk curves based on the losses per economic sector. The RFM uses a continuous process simulation including a multisite, multivariate weather generator, a hydrological model considering heterogeneous catchment processes, a coupled 1D-2D hydrodynamic model considering dike overtopping and hinterland storage, spatially explicit sector-wise exposure data and empirical multi-variable loss models calibrated for Germany. For all components, uncertainties in the data and models are estimated. We estimate the median Expected Annual Damage (EAD) and Value at Risk at 99.5% confidence for Germany to be euro0.529 bn and euro8.865 bn, respectively. The commercial sector dominates by making about 60% of the total risk, followed by the residential sector. The agriculture sector gets affected by small return period floods and only contributes to less than 3% to the total risk. The overall EAD is comparable to other large-scale estimates. However, the estimation of losses for specific return periods is substantially improved. The spatial consistency of the risk estimates avoids the large overestimation of losses for rare events that is common in other large-scale assessments with homogeneous return periods. Thus, the process-based, spatially consistent flood risk assessment by RFM is an important step forward and will serve as a benchmark for future German-wide flood risk assessments. KW - risk model chain KW - continuous simulation KW - expected annual damage KW - risk KW - curves KW - multi-sector risk Y1 - 2021 U6 - https://doi.org/10.1029/2021EF002259 SN - 2328-4277 VL - 9 IS - 10 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - JOUR A1 - Schoppa, Lukas A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Zöller, Gert A1 - Kreibich, Heidi T1 - Probabilistic flood loss models for companies JF - Water resources research N2 - Flood loss modeling is a central component of flood risk analysis. Conventionally, this involves univariable and deterministic stage-damage functions. Recent advancements in the field promote the use of multivariable and probabilistic loss models, which consider variables beyond inundation depth and account for prediction uncertainty. Although companies contribute significantly to total loss figures, novel modeling approaches for companies are lacking. Scarce data and the heterogeneity among companies impede the development of company flood loss models. We present three multivariable flood loss models for companies from the manufacturing, commercial, financial, and service sector that intrinsically quantify prediction uncertainty. Based on object-level loss data (n = 1,306), we comparatively evaluate the predictive capacity of Bayesian networks, Bayesian regression, and random forest in relation to deterministic and probabilistic stage-damage functions, serving as benchmarks. The company loss data stem from four postevent surveys in Germany between 2002 and 2013 and include information on flood intensity, company characteristics, emergency response, private precaution, and resulting loss to building, equipment, and goods and stock. We find that the multivariable probabilistic models successfully identify and reproduce essential relationships of flood damage processes in the data. The assessment of model skill focuses on the precision of the probabilistic predictions and reveals that the candidate models outperform the stage-damage functions, while differences among the proposed models are negligible. Although the combination of multivariable and probabilistic loss estimation improves predictive accuracy over the entire data set, wide predictive distributions stress the necessity for the quantification of uncertainty. KW - flood loss estimation KW - probabilistic modeling KW - companies KW - multivariable KW - models Y1 - 2020 U6 - https://doi.org/10.1029/2020WR027649 SN - 0043-1397 SN - 1944-7973 VL - 56 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Kuhlicke, Christian A1 - Masson, Torsten A1 - Kienzler, Sarah A1 - Sieg, Tobias A1 - Thieken, Annegret A1 - Kreibich, Heidi T1 - Multiple flood experiences and social resilience BT - Findings from three surveys on households and companies exposed to the 2013 flood in Germany T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Previous studies have explored the consequences of flood events for exposed households and companies by focusing on single flood events. Less is known about the consequences of experiencing repeated flood events for the resilience of households and companies. In this paper, we therefore explore how multiple floods experience affects the resilience of exposed households and companies. Resilience was made operational through individual appraisals of households and companies' ability to withstand and recover from material as well as health and psychological impacts of the 2013 flood in Germany. The paper is based on three different datasets including more than 2000 households and 300 companies that were affected by the 2013 flood. The surveys revealed that the resilience of households seems to increase, but only with regard to their subjectively appraised ability to withstand impacts on mobile goods and equipment (e.g., cars, TV, and radios). In regard to the ability of households to withstand overall financial consequences of repetitive floods, evidence for nonlinear (quadratic) trends can be found. With regard to psychological and health-related consequences, the findings are mixed but provide tentative evidence for eroding resilience among households. Companies' resilience increased with respect to material assets but appears to decrease with respect to ability to recover. We conclude by arguing that clear and operational definitions of resilience are required so that evidence-based resilience baselines can be established to assess whether resilience is eroding or improving over time. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1398 KW - social science KW - Europe Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516500 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Kuhlicke, Christian A1 - Masson, Torsten A1 - Kienzler, Sarah A1 - Sieg, Tobias A1 - Thieken, Annegret A1 - Kreibich, Heidi T1 - Multiple flood experiences and social resilience BT - Findings from three surveys on households and companies exposed to the 2013 flood in Germany JF - Weather, Climate, and Society N2 - Previous studies have explored the consequences of flood events for exposed households and companies by focusing on single flood events. Less is known about the consequences of experiencing repeated flood events for the resilience of households and companies. In this paper, we therefore explore how multiple floods experience affects the resilience of exposed households and companies. Resilience was made operational through individual appraisals of households and companies' ability to withstand and recover from material as well as health and psychological impacts of the 2013 flood in Germany. The paper is based on three different datasets including more than 2000 households and 300 companies that were affected by the 2013 flood. The surveys revealed that the resilience of households seems to increase, but only with regard to their subjectively appraised ability to withstand impacts on mobile goods and equipment (e.g., cars, TV, and radios). In regard to the ability of households to withstand overall financial consequences of repetitive floods, evidence for nonlinear (quadratic) trends can be found. With regard to psychological and health-related consequences, the findings are mixed but provide tentative evidence for eroding resilience among households. Companies' resilience increased with respect to material assets but appears to decrease with respect to ability to recover. We conclude by arguing that clear and operational definitions of resilience are required so that evidence-based resilience baselines can be established to assess whether resilience is eroding or improving over time. KW - social science KW - Europe Y1 - 2020 U6 - https://doi.org/10.1175/WCAS-D-18-0069.1 SN - 1948-8327 SN - 1948-8335 VL - 12 IS - 1 SP - 63 EP - 88 PB - American Meteorological Society CY - Boston ER - TY - GEN A1 - Sieg, Tobias A1 - Shinko, Thomas A1 - Vogel, Kristin A1 - Mechler, Reinhard A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 708 KW - June 2013 KW - Damage KW - Model KW - Inoperability KW - Disasters KW - Hazards KW - Germany KW - Losses KW - Event KW - Costs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429119 IS - 708 ER - TY - JOUR A1 - Sieg, Tobias A1 - Schinko, Thomas A1 - Vogel, Kristin A1 - Mechler, Reinhard A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification JF - PLoS ONE N2 - Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate. KW - June 2013 KW - Damage KW - Model KW - Inoperability KW - Disasters KW - Hazards KW - Germany KW - Losses KW - Event KW - Costs Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0212932 SN - 1932-6203 VL - 14 IS - 4 PB - Public Library of Science CY - San Francisco ER -