TY - GEN A1 - Sieg, Tobias A1 - Shinko, Thomas A1 - Vogel, Kristin A1 - Mechler, Reinhard A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 708 KW - June 2013 KW - Damage KW - Model KW - Inoperability KW - Disasters KW - Hazards KW - Germany KW - Losses KW - Event KW - Costs Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429119 IS - 708 ER - TY - GEN A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Seamless Estimation of Hydrometeorological Risk Across Spatial Scales T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 743 KW - spatial scales KW - risk assessment KW - hydro-meterological hazards KW - object-based damage modeling KW - uncertainty KW - probabilistic approaches Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435341 SN - 1866-8372 IS - 743 SP - 574 EP - 581 ER - TY - JOUR A1 - Sieg, Tobias A1 - Schinko, Thomas A1 - Vogel, Kristin A1 - Mechler, Reinhard A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification JF - PLoS ONE N2 - Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate. KW - June 2013 KW - Damage KW - Model KW - Inoperability KW - Disasters KW - Hazards KW - Germany KW - Losses KW - Event KW - Costs Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0212932 SN - 1932-6203 VL - 14 IS - 4 PB - Public Library of Science CY - San Francisco ER - TY - JOUR A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Merz, Bruno A1 - Kreibich, Heidi T1 - Seamless Estimation of Hydrometeorological Risk Across Spatial Scales JF - Earth's Future N2 - Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data. KW - spatial scales KW - risk assessment KW - hydro-meterological hazards KW - object-based damage modeling KW - uncertainty KW - probabilistic approaches Y1 - 2019 U6 - https://doi.org/10.1029/2018EF001122 SN - 2328-4277 VL - 7 IS - 5 SP - 574 EP - 581 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - THES A1 - Sieg, Tobias T1 - Reliability of flood damage estimations across spatial scales T1 - Verlässlichkeit von Hochwasserschadensschätzungen über räumliche Skalen N2 - Extreme Naturereignisse sind ein integraler Bestandteil der Natur der Erde. Sie werden erst dann zu Gefahren für die Gesellschaft, wenn sie diesen Ereignissen ausgesetzt ist. Dann allerdings können Naturgefahren verheerende Folgen für die Gesellschaft haben. Besonders hydro-meteorologische Gefahren wie zum Beispiel Flusshochwasser, Starkregenereignisse, Winterstürme, Orkane oder Tornados haben ein hohes Schadenspotential und treten rund um den Globus auf. Einhergehend mit einer immer wärmer werdenden Welt, werden auch Extremwetterereignisse, welche potentiell Naturgefahren auslösen können, immer wahrscheinlicher. Allerdings trägt nicht nur eine sich verändernde Umwelt zur Erhöhung des Risikos von Naturgefahren bei, sondern auch eine sich verändernde Gesellschaft. Daher ist ein angemessenes Risikomanagement erforderlich um die Gesellschaft auf jeder räumlichen Ebene an diese Veränderungen anzupassen. Ein essentieller Bestandteil dieses Managements ist die Abschätzung der ökonomischen Auswirkungen der Naturgefahren. Bisher allerdings fehlen verlässliche Methoden um die Auswirkungen von hydro-meteorologischen Gefahren abzuschätzen. Ein Hauptbestandteil dieser Arbeit ist daher die Entwicklung und Anwendung einer neuen Methode, welche die Verlässlichkeit der Schadensschätzung verbessert. Die Methode wurde beispielhaft zur Schätzung der ökonomischen Auswirkungen eines Flusshochwassers auf einzelne Unternehmen bis hin zu den Auswirkungen auf das gesamte Wirtschaftssystem Deutschlands erfolgreich angewendet. Bestehende Methoden geben meist wenig Information über die Verlässlichkeit ihrer Schätzungen. Da diese Informationen Entscheidungen zur Anpassung an das Risiko erleichtern, wird die Verlässlichkeit der Schadensschätzungen mit der neuen Methode dargestellt. Die Verlässlichkeit bezieht sich dabei nicht nur auf die Schadensschätzung selber, sondern auch auf die Annahmen, die über betroffene Gebäude gemacht werden. Nach diesem Prinzip kann auch die Verlässlichkeit von Annahmen über die Zukunft dargestellt werden, dies ist ein wesentlicher Aspekt für Prognosen. Die Darstellung der Verlässlichkeit und die erfolgreiche Anwendung zeigt das Potential der Methode zur Verwendung von Analysen für gegenwärtige und zukünftige hydro-meteorologische Gefahren. N2 - Natural extreme events are an integral part of nature on planet earth. Usually these events are only considered hazardous to humans, in case they are exposed. In this case, however, natural hazards can have devastating impacts on human societies. Especially hydro-meteorological hazards have a high damage potential in form of e.g. riverine and pluvial floods, winter storms, hurricanes and tornadoes, which can occur all over the globe. Along with an increasingly warm climate also an increase in extreme weather which potentially triggers natural hazards can be expected. Yet, not only changing natural systems, but also changing societal systems contribute to an increasing risk associated with these hazards. These can comprise increasing exposure and possibly also increasing vulnerability to the impacts of natural events. Thus, appropriate risk management is required to adapt all parts of society to existing and upcoming risks at various spatial scales. One essential part of risk management is the risk assessment including the estimation of the economic impacts. However, reliable methods for the estimation of economic impacts due to hydro-meteorological hazards are still missing. Therefore, this thesis deals with the question of how the reliability of hazard damage estimates can be improved, represented and propagated across all spatial scales. This question is investigated using the specific example of economic impacts to companies as a result of riverine floods in Germany. Flood damage models aim to describe the damage processes during a given flood event. In other words they describe the vulnerability of a specific object to a flood. The models can be based on empirical data sets collected after flood events. In this thesis tree-based models trained with survey data are used for the estimation of direct economic flood impacts on the objects. It is found that these machine learning models, in conjunction with increasing sizes of data sets used to derive the models, outperform state-of-the-art damage models. However, despite the performance improvements induced by using multiple variables and more data points, large prediction errors remain at the object level. The occurrence of the high errors was explained by a further investigation using distributions derived from tree-based models. The investigation showed that direct economic impacts to individual objects cannot be modeled by a normal distribution. Yet, most state-of-the-art approaches assume a normal distribution and take mean values as point estimators. Subsequently, the predictions are unlikely values within the distributions resulting in high errors. At larger spatial scales more objects are considered for the damage estimation. This leads to a better fit of the damage estimates to a normal distribution. Consequently, also the performance of the point estimators get better, although large errors can still occur due to the variance of the normal distribution. It is recommended to use distributions instead of point estimates in order to represent the reliability of damage estimates. In addition current approaches also mostly ignore the uncertainty associated with the characteristics of the hazard and the exposed objects. For a given flood event e.g. the estimation of the water level at a certain building is prone to uncertainties. Current approaches define exposed objects mostly by the use of land use data sets. These data sets often show inconsistencies, which introduce additional uncertainties. Furthermore, state-of-the-art approaches also imply problems of missing consistency when predicting the damage at different spatial scales. This is due to the use of different types of exposure data sets for model derivation and application. In order to face these issues a novel object-based method was developed in this thesis. The method enables a seamless estimation of hydro-meteorological hazard damage across spatial scales including uncertainty quantification. The application and validation of the method resulted in plausible estimations at all spatial scales without overestimating the uncertainty. Mainly newly available data sets containing individual buildings make the application of the method possible as they allow for the identification of flood affected objects by overlaying the data sets with water masks. However, the identification of affected objects with two different water masks revealed huge differences in the number of identified objects. Thus, more effort is needed for their identification, since the number of objects affected determines the order of magnitude of the economic flood impacts to a large extent. In general the method represents the uncertainties associated with the three components of risk namely hazard, exposure and vulnerability, in form of probability distributions. The object-based approach enables a consistent propagation of these uncertainties in space. Aside from the propagation of damage estimates and their uncertainties across spatial scales, a propagation between models estimating direct and indirect economic impacts was demonstrated. This enables the inclusion of uncertainties associated with the direct economic impacts within the estimation of the indirect economic impacts. Consequently, the modeling procedure facilitates the representation of the reliability of estimated total economic impacts. The representation of the estimates' reliability prevents reasoning based on a false certainty, which might be attributed to point estimates. Therefore, the developed approach facilitates a meaningful flood risk management and adaptation planning. The successful post-event application and the representation of the uncertainties qualifies the method also for the use for future risk assessments. Thus, the developed method enables the representation of the assumptions made for the future risk assessments, which is crucial information for future risk management. This is an important step forward, since the representation of reliability associated with all components of risk is currently lacking in all state-of-the-art methods assessing future risk. In conclusion, the use of object-based methods giving results in the form of distributions instead of point estimations is recommended. The improvement of the model performance by the means of multi-variable models and additional data points is possible, but small. Uncertainties associated with all components of damage estimation should be included and represented within the results. Furthermore, the findings of the thesis suggest that, at larger scales, the influence of the uncertainty associated with the vulnerability is smaller than those associated with the hazard and exposure. This leads to the conclusion that for an increased reliability of flood damage estimations and risk assessments, the improvement and active inclusion of hazard and exposure, including their uncertainties, is needed in addition to the improvements of the models describing the vulnerability of the objects. KW - hydro-meteorological risk KW - damage modeling KW - uncertainty KW - probabilistic approach KW - economic impacts KW - OpenStreetMap KW - hydro-meteorologische Risiken KW - Schadensmodellierung KW - Unsicherheiten KW - probabilistischer Ansatz KW - ökonomische Auswirkungen KW - OpenStreetMap Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426161 ER - TY - JOUR A1 - Sairam, Nivedita A1 - Brill, Fabio Alexander A1 - Sieg, Tobias A1 - Farrag, Mostafa A1 - Kellermann, Patric A1 - Viet Dung Nguyen, A1 - Lüdtke, Stefan A1 - Merz, Bruno A1 - Schröter, Kai A1 - Vorogushyn, Sergiy A1 - Kreibich, Heidi T1 - Process-based flood risk assessment for Germany JF - Earth's future / American Geophysical Union N2 - Large-scale flood risk assessments are crucial for decision making, especially with respect to new flood defense schemes, adaptation planning and estimating insurance premiums. We apply the process-based Regional Flood Model (RFM) to simulate a 5000-year flood event catalog for all major catchments in Germany and derive risk curves based on the losses per economic sector. The RFM uses a continuous process simulation including a multisite, multivariate weather generator, a hydrological model considering heterogeneous catchment processes, a coupled 1D-2D hydrodynamic model considering dike overtopping and hinterland storage, spatially explicit sector-wise exposure data and empirical multi-variable loss models calibrated for Germany. For all components, uncertainties in the data and models are estimated. We estimate the median Expected Annual Damage (EAD) and Value at Risk at 99.5% confidence for Germany to be euro0.529 bn and euro8.865 bn, respectively. The commercial sector dominates by making about 60% of the total risk, followed by the residential sector. The agriculture sector gets affected by small return period floods and only contributes to less than 3% to the total risk. The overall EAD is comparable to other large-scale estimates. However, the estimation of losses for specific return periods is substantially improved. The spatial consistency of the risk estimates avoids the large overestimation of losses for rare events that is common in other large-scale assessments with homogeneous return periods. Thus, the process-based, spatially consistent flood risk assessment by RFM is an important step forward and will serve as a benchmark for future German-wide flood risk assessments. KW - risk model chain KW - continuous simulation KW - expected annual damage KW - risk KW - curves KW - multi-sector risk Y1 - 2021 U6 - https://doi.org/10.1029/2021EF002259 SN - 2328-4277 VL - 9 IS - 10 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - RPRT A1 - Agarwal, Ankit A1 - Boessenkool, Berry A1 - Fischer, Madlen A1 - Hahn, Irene A1 - Köhn, Lisei A1 - Laudan, Jonas A1 - Moran, Thomas A1 - Öztürk, Ugur A1 - Riemer, Adrian A1 - Rözer, Viktor A1 - Sieg, Tobias A1 - Vogel, Kristin A1 - Wendi, Dadiyorto A1 - Bronstert, Axel A1 - Thieken, Annegret T1 - Die Sturzflut in Braunsbach, Mai 2016 T1 - The flash flood of Braunsbach, May 2006 BT - eine Bestandsaufnahme und Ereignisbeschreibung BT - a hydrological survey and event analysis N2 - Im Graduiertenkolleg NatRiskChange der Universität Potsdam und anderen Forschungseinrichtungen werden beobachtete sowie zukünftig mögliche Veränderungen von Naturgefahren untersucht. Teil des strukturierten Doktorandenprogramms sind sogenannte Task-Force-Einsätze, bei denen die Promovierende zeitlich begrenzt ein aktuelles Ereignis auswerten. Im Zuge dieser Aktivität wurde die Sturzflut vom 29.05.2016 in Braunsbach (Baden-Württemberg) untersucht. In diesem Bericht werden erste Auswertungen zur Einordnung der Niederschläge, zu den hydrologischen und geomorphologischen Prozessen im Einzugsgebiet des Orlacher Bachs sowie zu den verursachten Schäden beleuchtet. Die Region war Zentrum extremer Regenfälle in der Größenordnung von 100 mm innerhalb von 2 Stunden. Das 6 km² kleine Einzugsgebiet hat eine sehr schnelle Reaktionszeit, zumal bei vorgesättigtem Boden. Im steilen Bachtal haben mehrere kleinere und größere Hangrutschungen über 8000 m³ Geröll, Schutt und Schwemmholz in das Gewässer eingetragen und möglicherweise kurzzeitige Aufstauungen und Durchbrüche verursacht. Neben den großen Wassermengen mit einer Abflussspitze in einer Größenordnung von 100 m³/s hat gerade die Geschiebefracht zu großen Schäden an den Gebäuden entlang des Bachlaufs in Braunsbach geführt. N2 - The DFG graduate school “Natural Hazards and Risks in a Changing World” (NatRiskChange), which is located at the University of Potsdam and its partner institutions, studies previous as well as ongoing and potential future changes in the risk posed by natural hazards. The education program includes so-called task force activities, where the PhD students conduct a rapid event assessment directly after the occurrence of a hazardous natural event. Within this context the flash flood that hit the village Braunsbach (Baden-Württemberg, Germany) at May 29th, 2016 was investigated. This report summarizes first results describing the rainfall amount and intensities as well as hydrological and geomorphological processes in the corresponding catchment area of the Orlacher Bach. Further, the damages caused in Braunsbach are investigated. Rainfall intensity measures documented extreme precipitation in the area of Braunsbach with a cumulative amount of about 100 mm within 2 hours. The small catchment area, with a size of 6 km², has a small response time, especially under pre-saturated soil conditions. Several landslides, that occurred at the steep slopes of the river valley, transported more than 8000 m³ of gravel, debris and organic material into the water runoff. They may have caused temporal blockades, that collapsed after a certain amount of water accumulated. In addition to the high discharge, with peak values in the order of 100 m³/s, the high sediment content of the flash flood is mainly responsible for the large damages caused to the buildings in Braunsbach. KW - Sturzflut KW - Naturgefahren KW - Extremniederschlag KW - Schadensabschätzung KW - Hangrutschungen KW - flash flood KW - natural hazards KW - extreme precipitation KW - damage assessment KW - landslides Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394881 ER -