TY - JOUR A1 - Altintas, Zeynep A1 - Takiden, Aref A1 - Utesch, Tillmann A1 - Mroginski, Maria A. A1 - Schmid, Bianca A1 - Scheller, Frieder W. A1 - Süssmuth, Roderich D. T1 - Integrated approaches toward high-affinity artificial protein binders obtained via computationally simulated epitopes for protein recognition JF - Advanced functional materials N2 - Widely used diagnostic tools make use of antibodies recognizing targeted molecules, but additional techniques are required in order to alleviate the disadvantages of antibodies. Herein, molecular dynamic calculations are performed for the design of high affinity artificial protein binding surfaces for the recognition of neuron specific enolase (NSE), a known cancer biomarker. Computational simulations are employed to identify particularly stabile secondary structure elements. These epitopes are used for the subsequent molecular imprinting, where surface imprinting approach is applied. The molecular imprints generated with the calculated epitopes of greater stability (Cys-Ep1) show better binding properties than those of lower stability (Cys-Ep5). The average binding strength of imprints created with stabile epitopes is found to be around twofold and fourfold higher for the NSE derived peptide and NSE protein, respectively. The recognition of NSE is investigated in a wide concentration range, where high sensitivity (limit of detection (LOD) = 0.5 ng mL(-1)) and affinity (dissociation constant (K-d) = 5.3 x 10(-11)m) are achieved using Cys-Ep1 imprints reflecting the stable structure of the template molecules. This integrated approach employing stability calculations for the identification of stabile epitopes is expected to have a major impact on the future development of high affinity protein capturing binders. KW - artificial protein binders KW - cancer markers KW - computationally simulated epitopes KW - molecular imprinting KW - protein recognition Y1 - 2019 U6 - https://doi.org/10.1002/adfm.201807332 SN - 1616-301X SN - 1616-3028 VL - 29 IS - 15 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Peng, Lei A1 - Utesch, Tillmann A1 - Yarman, Aysu A1 - Jeoung, Jae-Hun A1 - Steinborn, Silke A1 - Dobbek, Holger A1 - Mroginski, Maria Andrea A1 - Tanne, Johannes A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein JF - Chemistry - a European journal N2 - Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant k(s) values between 0.93 and 2.86 s(-1) and apparent formal potentials E-app(0)' between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. KW - electrochemistry KW - electron transfer KW - heme proteins KW - molecular modeling KW - monolayers Y1 - 2015 U6 - https://doi.org/10.1002/chem.201405932 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 20 SP - 7596 EP - 7602 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Nellesen, Jens A1 - Laquai, R. A1 - Müller, B. R. A1 - Kupsch, Andreas A1 - Hentschel, M. P. A1 - Anar, N. B. A1 - Soppa, E. A1 - Tillmann, W. A1 - Bruno, Giovanni T1 - In situ analysis of damage evolution in an Al/ Al2O3 MMC under tensile load by synchrotron X-ray refraction imaging JF - Journal of materials science N2 - The in situ analysis of the damage evolution in a metal matrix composite (MMC) using synchrotron X-ray refraction radiography (SXRR) is presented. The investigated material is an Al alloy (6061)/10 vol MMC after T6 heat treatment. In an interrupted tensile test the gauge section of dog bone-shaped specimens is imaged in different states of tensile loading. On the basis of the SXRR images, the relative change of the specific surface (proportional to the amount of damage) in the course of tensile loading was analyzed. It could be shown that the damage can be detected by SXRR already at a stage of tensile loading, in which no observation of damage is possible with radiographic absorption-based imaging methods. Moreover, the quantitative analysis of the SXRR images reveals that the amount of damage increases homogeneously by an average of 25% with respect to the initial state. To corroborate the experimental findings, the damage distribution was imaged in 3D after the final tensile loading by synchrotron X-ray refraction computed tomography (SXRCT) and absorption-based synchrotron X-ray computed tomography (SXCT). It could be evidenced that defects and damages cause pronounced indications in the SXRCT images. Y1 - 2018 U6 - https://doi.org/10.1007/s10853-017-1957-x SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 8 SP - 6021 EP - 6032 PB - Springer CY - New York ER -