TY - JOUR A1 - Meier, Lars A. A1 - Krauze, Patryk A1 - Prater, Isabel A1 - Horn, Fabian A1 - Schaefer, Carlos Ernesto Reynaud A1 - Scholten, Thomas A1 - Wagner, Dirk A1 - Müller, Carsten Werner A1 - Kühn, Peter T1 - Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region JF - Biogeosciences N2 - James Ross Island (JRI) offers the exceptional opportunity to study microbial-driven pedogenesis without the influence of vascular plants or faunal activities (e.g., penguin rookeries). In this study, two soil profiles from JRI (one at Santa Martha Cove - SMC, and another at Brandy Bay BB) were investigated, in order to gain information about the initial state of soil formation and its interplay with prokaryotic activity, by combining pedological, geochemical and microbiological methods. The soil profiles are similar with respect to topographic position and parent material but are spatially separated by an orographic barrier and therefore represent windward and leeward locations towards the mainly southwesterly winds. These different positions result in differences in electric conductivity of the soils caused by additional input of bases by sea spray at the windward site and opposing trends in the depth functions of soil pH and electric conductivity. Both soils are classified as Cryosols, dominated by bacterial taxa such as Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes and Chloroflexi. A shift in the dominant taxa was observed below 20 cm in both soils as well as an increased abundance of multiple operational taxonomic units (OTUs) related to potential chemolithoautotrophic Acidiferrobacteraceae. This shift is coupled by a change in microstructure. While single/pellicular grain microstructure (SMC) and platy microstructure (BB) are dominant above 20 cm, lenticular microstructure is dominant below 20 cm in both soils. The change in microstructure is caused by frequent freeze-thaw cycles and a relative high water content, and it goes along with a development of the pore spacing and is accompanied by a change in nutrient content. Multivariate statistics revealed the influence of soil parameters such as chloride, sulfate, calcium and organic carbon contents, grain size distribution and pedogenic oxide ratios on the overall microbial community structure and explained 49.9% of its variation. The correlation of the pedogenic oxide ratios with the compositional distribution of microorganisms as well as the relative abundance certain microorganisms such as potentially chemolithotrophic Acidiferrobacteraceae-related OTUs could hint at an interplay between soil-forming processes and microorganisms. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-2481-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 12 SP - 2481 EP - 2499 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Müller, Steffen A1 - Krüger, Tom A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs T1 - Effects of surface instability on neuromuscular performance during drop jumps and landings JF - European journal of applied physiology N2 - The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 %, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 %, p = 0.022, f = 0.72), and time for braking phase (12 %, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 %, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 %, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces. KW - Stretch-shortening cycle KW - Trunk muscle strength KW - Jump height KW - Electromyography Y1 - 2013 U6 - https://doi.org/10.1007/s00421-013-2724-6 SN - 1439-6319 SN - 1439-6327 VL - 113 IS - 12 SP - 2943 EP - 2951 PB - Springer CY - New York ER - TY - JOUR A1 - Müller, Eva Nora A1 - van Schaik, Loes A1 - Blume, Theresa A1 - Bronstert, Axel A1 - Carus, Jana A1 - Fleckenstein, Jan H. A1 - Fohrer, Nicola A1 - Geissler, Katja A1 - Gerke, Horst H. A1 - Gräff, Thomas A1 - Hesse, Cornelia A1 - Hildebrandt, Anke A1 - Hölker, Franz A1 - Hunke, Philip A1 - Körner, Katrin A1 - Lewandowski, Jörg A1 - Lohmann, Dirk A1 - Meinikmann, Karin A1 - Schibalski, Anett A1 - Schmalz, Britta A1 - Schröder-Esselbach, Boris A1 - Tietjen, Britta T1 - Scales, key aspects, feedbacks and challenges of ecohydrological research in Germany JF - Hydrologie und Wasserbewirtschaftung N2 - Ecohydrology analyses the interactions of biotic and abiotic aspects of our ecosystems and landscapes. It is a highly diverse discipline in terms of its thematic and methodical research foci. This article gives an overview of current German ecohydrological research approaches within plant-animal-soil-systems, meso-scale catchments and their river networks, lake systems, coastal areas and tidal rivers. It discusses their relevant spatial and temporal process scales and different types of interactions and feedback dynamics between hydrological and biotic processes and patterns. The following topics are considered key challenges: innovative analysis of the interdisciplinary scale continuum, development of dynamically coupled model systems, integrated monitoring of coupled processes at the interface and transition from basic to applied ecohydrological science to develop sustainable water and land resource management strategies under regional and global change. KW - Coastal regions KW - drylands KW - ecohydrological modelling KW - feedback KW - hyporheic zone KW - meso-scale ecosystems KW - plant-animal-soil-system KW - river networks Y1 - 2014 U6 - https://doi.org/10.5675/HyWa_2014,4_2 SN - 1439-1783 VL - 58 IS - 4 SP - 221 EP - 240 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER - TY - JOUR A1 - Eibl, Eva P. S. A1 - Müller, Daniel A1 - Walter, Thomas R. A1 - Allahbakhshi, Masoud A1 - Jousset, Philippe A1 - Hersir, Gylfi Páll A1 - Dahm, Torsten T1 - Eruptive cycle and bubble trap of Strokkur Geyser, Iceland JF - Journal of geophysical research : JGR. B: Solid earth N2 - The eruption frequency of geysers can be studied easily on the surface. However, details of the internal structure including possible water and gas filled chambers feeding eruptions and the driving mechanisms often remain elusive. We used a multidisciplinary network of seismometers, video cameras, water pressure sensors and one tiltmeter to study the eruptive cycle, internal structure, and mechanisms driving the eruptive cycle of Strokkur geyser in June 2018. An eruptive cycle at Strokkur always consists of four phases: (1) Eruption, (2) post-eruptive conduit refilling, (3) gas filling of the bubble trap, and (4) regular bubble collapse at shallow depth in the conduit. For a typical single eruption 19 +/- 4 bubble collapses occur in Phase 3 and 8 +/- 2 collapses in Phase 4 at a mean spacing of 1.52 +/- 0.29 and 24.5 +/- 5.9 s, respectively. These collapses release latent heat to the fluid in the bubble trap (Phase 3) and later to the fluid in the conduit (Phase 4). The latter eventually reaches thermodynamic conditions for an eruption. Single to sextuple eruptions have similar spacings between bubble collapses and are likely fed from the same bubble trap at 23.7 +/- 4.4 m depth, 13-23 m west of the conduit. However, the duration of the eruption and recharging phase linearly increases likely due to a larger water, gas and heat loss from the system. Our tremor data provides documented evidence for a bubble trap beneath a pool geyser. KW - bubble trap KW - eruptive cycle KW - geyser KW - hydrothermal systems KW - source KW - location KW - tremor Y1 - 2021 U6 - https://doi.org/10.1029/2020JB020769 SN - 2169-9313 SN - 2169-9356 VL - 126 IS - 4 PB - Wiley CY - Hoboken, NJ ER - TY - GEN A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Pe'er, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research BT - exploring new avenues to address spatiotemporal biodiversity dynamics N2 - Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of ‘movement ecology’. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide ‘mobile links’ between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through ‘equalizing’ and ‘stabilizing’ mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 401 KW - mobile links KW - species coexistence KW - community dynamics KW - biodiversity conservation KW - long distance movement KW - landscape genetics KW - individual based modeling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401177 ER - TY - JOUR A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Peer, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics Y1 - 2013 UR - http://download.springer.com/static/pdf/827/art%253A10.1186%252F2051-3933-1- 6.pdf?auth66=1394891271_f1a4cb74d6be42ee3f8872ef2ca22c24&ext=.pdf U6 - https://doi.org/10.1186/2051-3933-1-6 ER - TY - JOUR A1 - Gossner, Martin M. A1 - Lewinsohn, Thomas M. A1 - Kahl, Tiemo A1 - Grassein, Fabrice A1 - Boch, Steffen A1 - Prati, Daniel A1 - Birkhofer, Klaus A1 - Renner, Swen C. A1 - Sikorski, Johannes A1 - Wubet, Tesfaye A1 - Arndt, Hartmut A1 - Baumgartner, Vanessa A1 - Blaser, Stefan A1 - Blüthgen, Nico A1 - Börschig, Carmen A1 - Buscot, Francois A1 - Diekötter, Tim A1 - Jorge, Leonardo Re A1 - Jung, Kirsten A1 - Keyel, Alexander C. A1 - Klein, Alexandra-Maria A1 - Klemmer, Sandra A1 - Krauss, Jochen A1 - Lange, Markus A1 - Müller, Jörg A1 - Overmann, Jörg A1 - Pasalic, Esther A1 - Penone, Caterina A1 - Perovic, David J. A1 - Purschke, Oliver A1 - Schall, Peter A1 - Socher, Stephanie A. A1 - Sonnemann, Ilja A1 - Tschapka, Marco A1 - Tscharntke, Teja A1 - Türke, Manfred A1 - Venter, Paul Christiaan A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Wolters, Volkmar A1 - Wurst, Susanne A1 - Westphal, Catrin A1 - Fischer, Markus A1 - Weisser, Wolfgang W. A1 - Allan, Eric T1 - Land-use intensification causes multitrophic homogenization of grassland communities JF - Nature : the international weekly journal of science N2 - Land-use intensification is a major driver of biodiversity loss(1,2). Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in beta-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (alpha)-diversity(1,3) and neglected biodiversity loss at larger spatial scales. Studies addressing beta-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above-and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in alpha-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on beta-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in beta-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local alpha-diversity in aboveground groups, whereas the alpha-diversity increased in belowground groups. Correlations between the alpha-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification. Y1 - 2016 U6 - https://doi.org/10.1038/nature20575 SN - 0028-0836 SN - 1476-4687 VL - 540 SP - 266 EP - + PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Allan, Eric A1 - Bossdorf, Oliver A1 - Dormann, Carsten F. A1 - Prati, Daniel A1 - Gossner, Martin M. A1 - Tscharntke, Teja A1 - Blüthgen, Nico A1 - Bellach, Michaela A1 - Birkhofer, Klaus A1 - Boch, Steffen A1 - Böhm, Stefan A1 - Börschig, Carmen A1 - Chatzinotas, Antonis A1 - Christ, Sabina A1 - Daniel, Rolf A1 - Diekötter, Tim A1 - Fischer, Christiane A1 - Friedl, Thomas A1 - Glaser, Karin A1 - Hallmann, Christine A1 - Hodac, Ladislav A1 - Hölzel, Norbert A1 - Jung, Kirsten A1 - Klein, Alexandra-Maria A1 - Klaus, Valentin H. A1 - Kleinebecker, Till A1 - Krauss, Jochen A1 - Lange, Markus A1 - Morris, E. Kathryn A1 - Müller, Jörg A1 - Nacke, Heiko A1 - Pasalic, Esther A1 - Rillig, Matthias C. A1 - Rothenwoehrer, Christoph A1 - Schally, Peter A1 - Scherber, Christoph A1 - Schulze, Waltraud X. A1 - Socher, Stephanie A. A1 - Steckel, Juliane A1 - Steffan-Dewenter, Ingolf A1 - Türke, Manfred A1 - Weiner, Christiane N. A1 - Werner, Michael A1 - Westphal, Catrin A1 - Wolters, Volkmar A1 - Wubet, Tesfaye A1 - Gockel, Sonja A1 - Gorke, Martin A1 - Hemp, Andreas A1 - Renner, Swen C. A1 - Schöning, Ingo A1 - Pfeiffer, Simone A1 - König-Ries, Birgitta A1 - Buscot, Francois A1 - Linsenmair, Karl Eduard A1 - Schulze, Ernst-Detlef A1 - Weisser, Wolfgang W. A1 - Fischer, Markus T1 - Interannual variation in land-use intensity enhances grassland multidiversity JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation. KW - biodiversity loss KW - agricultural grasslands KW - Biodiversity Exploratories Y1 - 2014 U6 - https://doi.org/10.1073/pnas.1312213111 SN - 0027-8424 VL - 111 IS - 1 SP - 308 EP - 313 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Herold, Fabian A1 - Theobald, Paula A1 - Gronwald, Thomas A1 - Rapp, Michael A. A1 - Müller, Notger Germar T1 - Going digital – a commentary on the terminology used at the intersection of physical activity and digital health T2 - Zweitveröffentlichungen der Universität Potsdam : Gesundheitswissenschaftliche Reihe N2 - In recent years digital technologies have become a major means for providing health-related services and this trend was strongly reinforced by the current Coronavirus disease 2019 (COVID-19) pandemic. As it is well-known that regular physical activity has positive effects on individual physical and mental health and thus is an important prerequisite for healthy aging, digital technologies are also increasingly used to promote unstructured and structured forms of physical activity. However, in the course of this development, several terms (e.g., Digital Health, Electronic Health, Mobile Health, Telehealth, Telemedicine, and Telerehabilitation) have been introduced to refer to the application of digital technologies to provide health-related services such as physical interventions. Unfortunately, the above-mentioned terms are often used in several different ways, but also relatively interchangeably. Given that ambiguous terminology is a major source of difficulty in scientific communication which can impede the progress of theoretical and empirical research, this article aims to make the reader aware of the subtle differences between the relevant terms which are applied at the intersection of physical activity and Digital Health and to provide state-of-art definitions for them. T3 - Zweitveröffentlichungen der Universität Potsdam : Gesundheitswissenschaftliche Reihe - 5 KW - Digital Health KW - Electronic Health KW - Mobile Health KW - Telehealth KW - Telemedicine KW - Physical activity KW - Physical training KW - Aging Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-581301 IS - 5 ER - TY - JOUR A1 - Herold, Fabian A1 - Theobald, Paula A1 - Gronwald, Thomas A1 - Rapp, Michael A. A1 - Müller, Notger Germar T1 - Going digital – a commentary on the terminology used at the intersection of physical activity and digital health JF - European review of aging and physical activity N2 - In recent years digital technologies have become a major means for providing health-related services and this trend was strongly reinforced by the current Coronavirus disease 2019 (COVID-19) pandemic. As it is well-known that regular physical activity has positive effects on individual physical and mental health and thus is an important prerequisite for healthy aging, digital technologies are also increasingly used to promote unstructured and structured forms of physical activity. However, in the course of this development, several terms (e.g., Digital Health, Electronic Health, Mobile Health, Telehealth, Telemedicine, and Telerehabilitation) have been introduced to refer to the application of digital technologies to provide health-related services such as physical interventions. Unfortunately, the above-mentioned terms are often used in several different ways, but also relatively interchangeably. Given that ambiguous terminology is a major source of difficulty in scientific communication which can impede the progress of theoretical and empirical research, this article aims to make the reader aware of the subtle differences between the relevant terms which are applied at the intersection of physical activity and Digital Health and to provide state-of-art definitions for them. KW - Digital Health KW - Electronic Health KW - Mobile Health KW - Telehealth KW - Telemedicine KW - Physical activity KW - Physical training KW - Aging Y1 - 2022 U6 - https://doi.org/10.1186/s11556-022-00296-y SN - 1861-6909 VL - 19 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Geissler, Peter A1 - Poyarkov, Nikolay A. A1 - Grismer, Lee A1 - Nguyen, Truong Q. A1 - An, Hang T. A1 - Neang, Thy A1 - Kupfer, Alexander A1 - Ziegler, Thomas A1 - Böhme, Wolfgang A1 - Müller, Hendrik T1 - New Ichthyophis species from Indochina (Gymnophiona, Ichthyophiidae): 1. The unstriped forms with descriptions of three new species and the redescriptions of I-acuminatus Taylor, 1960, I-youngorum Taylor, 1960 and I-laosensis Taylor, 1969 JF - Organisms, diversity & evolution : official journal of the Gesellschaft für Biologische Systematik N2 - Caecilians of the genus Ichthyophis Fitzinger, 1826 are among the most poorly known amphibian taxa within Southeast Asia. Populations of Ichthyophis from the Indochina region (comprising Cambodia, Laos, and Vietnam) have been assigned to five taxa: Ichthyophis acuminatus, Ichthyophis bannanicus, Ichthyophis kohtaoensis, Ichthyophis laosensis, and Ichthyophis nguyenorum. Barcoding of recently collected specimens indicates that Indochinese congeners form a clade that includes several morphologically and genetically distinct but yet undescribed species. Although body coloration is supported by the molecular analyses as a diagnostic character at species level, unstriped forms are paraphyletic with respect to striped Ichthyophis. Based on our morphological and molecular analyses, three distinct unstriped ichthyophiid species, Ichthyophis cardamomensis sp. nov. from western Cambodia, Ichthyophis catlocensis sp. nov. from southern Vietnam, and Ichthyophis chaloensis sp. nov. from central Vietnam are described as new herein, almost doubling the number of Ichthyophis species known from the Indochinese region. All three new species differ from their unstriped congeners in a combination of morphological and molecular traits. In addition, redescriptions of three unstriped Ichthyophis species (Ichthyophis acuminatus, I. laosensis, I. youngorum) from Indochina and adjacent Thailand are provided. KW - Biogeography KW - Caecilians KW - Indochina KW - Cambodia KW - Laos KW - Thailand KW - Vietnam KW - mtDNA KW - Barcoding KW - COI KW - cyt b KW - Phylogeny KW - Integrative taxonomy Y1 - 2015 U6 - https://doi.org/10.1007/s13127-014-0190-6 SN - 1439-6092 SN - 1618-1077 VL - 15 IS - 1 SP - 143 EP - 174 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Lai, Huagui A1 - Luo, Jincheng A1 - Zwirner, Yannick A1 - Olthof, Selina A1 - Wieczorek, Alexander A1 - Ye, Fangyuan A1 - Jeangros, Quentin A1 - Yin, Xinxing A1 - Akhundova, Fatima A1 - Ma, Tianshu A1 - He, Rui A1 - Kothandaraman, Radha K. A1 - Chin, Xinyu A1 - Gilshtein, Evgeniia A1 - Muller, Andre A1 - Wang, Changlei A1 - Thiesbrummel, Jarla A1 - Siol, Sebastian A1 - Prieto, Jose Marquez A1 - Unold, Thomas A1 - Stolterfoht, Martin A1 - Chen, Cong A1 - Tiwari, Ayodhya N. A1 - Zhao, Dewei A1 - Fu, Fan T1 - High-performance flexible all-Perovskite tandem solar cells with reduced V-OC-deficit in wide-bandgap subcell JF - Advanced energy materials N2 - Among various types of perovskite-based tandem solar cells (TSCs), all-perovskite TSCs are of particular attractiveness for building- and vehicle-integrated photovoltaics, or space energy areas as they can be fabricated on flexible and lightweight substrates with a very high power-to-weight ratio. However, the efficiency of flexible all-perovskite tandems is lagging far behind their rigid counterparts primarily due to the challenges in developing efficient wide-bandgap (WBG) perovskite solar cells on the flexible substrates as well as their low open-circuit voltage (V-OC). Here, it is reported that the use of self-assembled monolayers as hole-selective contact effectively suppresses the interfacial recombination and allows the subsequent uniform growth of a 1.77 eV WBG perovskite with superior optoelectronic quality. In addition, a postdeposition treatment with 2-thiopheneethylammonium chloride is employed to further suppress the bulk and interfacial recombination, boosting the V-OC of the WBG top cell to 1.29 V. Based on this, the first proof-of-concept four-terminal all-perovskite flexible TSC with a power conversion efficiency of 22.6% is presented. When integrating into two-terminal flexible tandems, 23.8% flexible all-perovskite TSCs with a superior V-OC of 2.1 V is achieved, which is on par with the V-OC reported on the 28% all-perovskite tandems grown on the rigid substrate. KW - all-perovskite tandems KW - flexible tandem solar cells KW - perovskite KW - V OC-deficit KW - wide-bandgap Y1 - 2022 U6 - https://doi.org/10.1002/aenm.202202438 SN - 1614-6832 SN - 1614-6840 VL - 12 IS - 45 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gechev, Tsanko S. A1 - Benina, Maria A1 - Obata, Toshihiro A1 - Tohge, Takayuki A1 - Neerakkal, Sujeeth A1 - Minkov, Ivan A1 - Hille, Jacques A1 - Temanni, Mohamed-Ramzi A1 - Marriott, Andrew S. A1 - Bergström, Ed A1 - Thomas-Oates, Jane A1 - Antonio, Carla A1 - Müller-Röber, Bernd A1 - Schippers, Jos H. M. A1 - Fernie, Alisdair A1 - Toneva, Valentina T1 - Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis JF - Cellular and molecular life sciences N2 - Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and gamma-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis. KW - Antioxidant genes KW - Catalase KW - Desiccation tolerance KW - Drought stress KW - Metabolome analysis KW - Resurrection plants Y1 - 2013 U6 - https://doi.org/10.1007/s00018-012-1155-6 SN - 1420-682X VL - 70 IS - 4 SP - 689 EP - 709 PB - Springer CY - Basel ER -