TY - INPR A1 - Megow, Jörg A1 - Körzdörfer, Thomas A1 - Renger, Thomas A1 - Sparenberg, Mino A1 - Blumstengel, Sylke A1 - May, Volkhard T1 - Reply to "Comment on 'Calculating Optical Absorption Spectra of Thin Polycrystalline Organic Films: Structural Disorder and Site-Dependent van der Waals Interaction" T2 - The journal of physical chemistry : C, Nanomaterials and interfaces Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b05536 SN - 1932-7447 VL - 119 IS - 32 SP - 18818 EP - 18820 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Megow, Jörg A1 - Körzdörfer, Thomas A1 - Renger, Thomas A1 - Sparenberg, Mino A1 - Blumstengel, Sylke A1 - Henneberger, Fritz A1 - May, Volkhard T1 - Calculating Optical Absorption Spectra of Thin Polycrystalline Organic Films: Structural Disorder and Site-Dependent van der Waals Interaction JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - We propose a new approach for calculating the change of the absorption spectrum of a molecule when moved from the gas phase to a crystalline morphology. The so-called gas-to-crystal shift Delta epsilon(m) is mainly caused by dispersion effects and depends sensitively on the molecules specific position in the nanoscopic setting. Using an extended dipole approximation, we are able to divide Delta epsilon(m)= -QW(m) in two factors, where Q depends only on the molecular species and accounts for all nonresonant electronic transitions contributing to the dispersion while W-m is a geometry factor expressing the site dependence of the shift in a given molecular structure. The ability of our approach to predict absorption spectra is demonstrated using the example of polycrystalline films of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI). Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b01587 SN - 1932-7447 VL - 119 IS - 10 SP - 5747 EP - 5751 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ast, Sandra A1 - Schwarze, Thomas A1 - Müller, Holger A1 - Sukhanov, Aleksey A1 - Michaelis, Stefanie A1 - Wegener, Joachim A1 - Wolfbeis, Otto S. A1 - Körzdörfer, Thomas A1 - Dürkop, Axel A1 - Holdt, Hans-Jürgen T1 - A highly K+-Selective Phenylaza-[18]crown-6-Lariat-Ether-Based Fluoroionophore and its application in the sensing of K+ Ions with an optical sensor film and in cells JF - Chemistry - a European journal N2 - Herein, we report the synthesis of two phenylaza-[18]crown-6 lariat ethers with a coumarin fluorophore (1 and 2) and we reveal that compound 1 is an excellent probe for K+ ions under simulated physiological conditions. The presence of a 2-methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat-free phenylaza-[18] crown-6 ether analogues. Probe 1 shows a high K+/Na+ selectivity and a 2.5-fold fluorescence enhancement was observed in the presence of 100 mm K+ ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150 s, and a signal change of 7.8% per 1 mm K+ within the range 1-10 mm K+. The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K+ ions on both the extracellular and intracellular levels. KW - crown compounds KW - fluorescence KW - gels KW - potassium KW - sensors Y1 - 2013 U6 - https://doi.org/10.1002/chem.201302350 SN - 0947-6539 SN - 1521-3765 VL - 19 IS - 44 SP - 14911 EP - 14917 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kar, M. A1 - Körzdörfer, Thomas T1 - Computational screening of methylammonium based halide perovskites with bandgaps suitable for perovskite-perovskite tandem solar cells JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We aim to find homovalent alternatives for lead and iodine in CH3NH3PbI3 perovskites that show bandgaps suitable for building novel perovskite-perovskite tandem solar cells. To this end, we employ a computational screening for materials with a bandgap between 1.0 eV and 1.9 eV, using density functional theory calculations at the Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof levels of theory. The room-temperature stability of the materials and their phases that satisfy the bandgap criteria is evaluated based on the empirical Goldschmidt tolerance factor. In total, our screening procedure covers 30 different perovskite structures in three phases (orthorhombic, cubic, tetragonal) each. We find 9 materials that are predicted to be stable at room temperature and to have bandgaps in an energy range suitable for application in tandem solar cells. Published by AIP Publishing. Y1 - 2018 U6 - https://doi.org/10.1063/1.5037535 SN - 0021-9606 SN - 1089-7690 VL - 149 IS - 21 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Körzdörfer, Thomas A1 - Bredas, Jean-Luc T1 - Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals JF - Accounts of chemical research N2 - CONSPECTUS: Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers. In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter. We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of pi-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the reliable prediction of the optical absorption spectrum of low-band-gap polymers. We also explain why the use of standard, out-of-the-box range-separation parameters is not recommended for the DFT and/or TD-DFT description of the ground and excited states of extended, pi-conjugated systems. Finally, we highlight a severe drawback of tuned range-separated hybrid functionals by discussing the example of the calculation of bond-length alternation in polyacetylene, which leads us to point out the challenges for future developments in this field. Y1 - 2014 U6 - https://doi.org/10.1021/ar500021t SN - 0001-4842 SN - 1520-4898 VL - 47 IS - 11 SP - 3284 EP - 3291 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Sutton, Christopher A1 - Körzdörfer, Thomas A1 - Gray, Matthew T. A1 - Brunsfeld, Max A1 - Parrish, Robert M. A1 - Sherrill, C. David A1 - Sears, John S. A1 - Bredas, Jean-Luc T1 - Accurate description of torsion potentials in conjugated polymers using density functionals with reduced self-interaction error JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We investigate the torsion potentials in two prototypical pi-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains. Y1 - 2014 U6 - https://doi.org/10.1063/1.4863218 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 5 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Marom, Noa A1 - Körzdörfer, Thomas A1 - Ren, Xinguo A1 - Tkatchenko, Alexandre A1 - Chelikowsky, James R. T1 - Size effects in the interface level alignment of dye-Sensitized TiO2 clusters JF - The journal of physical chemistry letters N2 - The efficiency of dye-sensitized solar cells (DSCs) depends critically on the electronic structure of the interfaces in the active region. We employ recently developed dispersion-inclusive density functional theory (DFT) and GW methods to study the electronic structure of TiO2 clusters sensitized with catechol molecules. We show that the energy level alignment at the dye-TiO2 interface is the result of an intricate interplay of quantum size effects and dynamic screening effects and that it may be manipulated by nanostructuring and functionalizing the TiO2. We demonstrate that the energy difference between the catechol LUMO and the TiO2 LUMO, which is associated with the injection loss in DSCs, may be reduced significantly by reducing the dimensions of nanostructured TiO2 and by functionalizing the TiO2 with wide-gap moieties, which contribute additional screening but do not interact strongly with the frontier orbitals of the TiO2 and the dye. Precise control of the electronic structure may be achieved via "interface engineering" in functional nanostructures. Y1 - 2014 U6 - https://doi.org/10.1021/jz5008356 SN - 1948-7185 VL - 5 IS - 14 SP - 2395 EP - 2401 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Körzdörfer, Thomas A1 - Parrish, Robert M. A1 - Marom, Noa A1 - Sears, John S. A1 - Sherrill, C. David A1 - Bredas, Jean-Luc T1 - Assessment of the performance of tuned range-separated hybrid density functionals in predicting accurate quasiparticle spectra JF - Physical review : B, Condensed matter and materials physics N2 - Long-range corrected hybrid functionals that employ a nonempirically tuned range-separation parameter have been demonstrated to yield accurate ionization potentials and fundamental gaps for a wide range of finite systems. Here, we address the question of whether this high level of accuracy is limited to the highest occupied/lowest unoccupied energy levels to which the range-separation parameter is tuned or whether it is retained for the entire valence spectrum. We examine several pi-conjugated molecules and find that orbitals of a different character and symmetry require significantly different range-separation parameters and fractions of exact exchange. This imbalanced treatment of orbitals of a different nature biases the resulting eigenvalue spectra. Thus, the existing schemes for the tuning of range-separated hybrid functionals, while providing for good agreement between the highest occupied energy level and the first ionization potential, do not achieve accuracy comparable to reliable G(0)W(0) computations for the entire quasiparticle spectrum. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevB.86.205110 SN - 1098-0121 VL - 86 IS - 20 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sutton, Christopher A1 - Körzdörfer, Thomas A1 - Coropceanu, Veaceslav A1 - Bredas, Jean-Luc T1 - Toward a robust quantum-chemical description of organic mixed-valence systems JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The electronic coupling between redox sites in mixed-valence systems has attracted the interest of the chemistry community for a long time. Many computational studies have focused on trying to determine its magnitude as a function of the nature of the redox sites and of the bridge(s) between them. However, in most instances, the quantum-chemical methodologies that have been employed suffer from intrinsic errors that lead to either an overlocalized or an overdelocalized character of the electronic structure. These deficiencies prevent an accurate depiction of the degree of charge (de)localization in the system and, as a result, of the extent of electronic coupling. Here we use nonempirically tuned long-range corrected density functional theory and show that it provides a robust, efficient approach to characterize organic mixed-valence systems. We first demonstrate the performance of this approach via a study of representative Robin-Day class-II (localized) and class-III (delocalized) complexes. We then examine a borderline class-II/class-III complex, which had proven difficult to describe accurately with standard density functional theory and Hartree-Fock methods. Y1 - 2014 U6 - https://doi.org/10.1021/jp410461v SN - 1932-7447 VL - 118 IS - 8 SP - 3925 EP - 3934 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Marom, Noa A1 - Caruso, Fabio A1 - Ren, Xinguo A1 - Hofmann, Oliver T. A1 - Körzdörfer, Thomas A1 - Chelikowsky, James R. A1 - Rubio, Angel A1 - Scheffler, Matthias A1 - Rinke, Patrick T1 - Benchmark of GW methods for azabenzenes JF - Physical review : B, Condensed matter and materials physics N2 - Many-body perturbation theory in the GW approximation is a useful method for describing electronic properties associated with charged excitations. A hierarchy of GW methods exists, starting from non-self-consistent G(0)W(0), through partial self-consistency in the eigenvalues and in the Green's function (scGW(0)), to fully self-consistent GW (scGW). Here, we assess the performance of these methods for benzene, pyridine, and the diazines. The quasiparticle spectra are compared to photoemission spectroscopy (PES) experiments with respect to all measured particle removal energies and the ordering of the frontier orbitals. We find that the accuracy of the calculated spectra does not match the expectations based on their level of self-consistency. In particular, for certain starting points G(0)W(0) and scGW(0) provide spectra in better agreement with the PES than scGW. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevB.86.245127 SN - 1098-0121 VL - 86 IS - 24 PB - American Physical Society CY - College Park ER -