TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Schwerdtle, Tanja A1 - Koch, Matthias T1 - LC-HRMS-Based identification of transformation products of the drug salinomycin generated by electrochemistry and liver microsome JF - Antibiotics N2 - The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction. KW - salinomycin KW - ionophore antibiotics KW - transformation product KW - electrochemistry KW - rat KW - human liver microsomes KW - HRMS Y1 - 2022 U6 - https://doi.org/10.3390/antibiotics11020155 SN - 2079-6382 VL - 11 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Witt, Barbara A1 - Friese, Sharleen A1 - Michaelis, Vivien A1 - Hölz-Armstrong, Lisa A1 - Martin, Maximilian A1 - Ebert, Franziska A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells JF - Food and chemical toxicology N2 - Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes. KW - Manganese KW - Dopaminergic neurons KW - DNA integrity KW - DNA repair KW - Neurodegeneration KW - Oxidative stress KW - Genotoxicity Y1 - 2022 U6 - https://doi.org/10.1016/j.fct.2022.112822 SN - 0278-6915 SN - 1873-6351 VL - 161 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Varão Moura, Alexandre A1 - Aparecido Rosini Silva, Alex A1 - Domingos Santo da Silva, José A1 - Aleixo Leal Pedroza, Lucas A1 - Bornhorst, Julia A1 - Stiboller, Michael A1 - Schwerdtle, Tanja A1 - Gubert, Priscila T1 - Determination of ions in Caenorhabditis elegans by ion chromatography JF - Journal of chromatography. B N2 - The Caenorhabditis elegans (C. elegans) is a model organism that has been increasingly used in health and environmental toxicity assessments. The quantification of such elements in vivo can assist in studies that seek to relate the exposure concentration to possible biological effects. Therefore, this study is the first to propose a method of quantitative analysis of 21 ions by ion chromatography (IC), which can be applied in different toxicity studies in C. elegans. The developed method was validated for 12 anionic species (fluoride, acetate, chloride, nitrite, bromide, nitrate, sulfate, oxalate, molybdate, dichromate, phosphate, and perchlorate), and 9 cationic species (lithium, sodium, ammonium, thallium, potassium, magnesium, manganese, calcium, and barium). The method did not present the presence of interfering species, with R2 varying between 0.9991 and 0.9999, with a linear range from 1 to 100 mu g L-1. Limits of detection (LOD) and limits of quantification (LOQ) values ranged from 0.2319 mu g L-1 to 1.7160 mu g L-1 and 0.7028 mu g L-1 to 5.1999 mu g L-1, respectively. The intraday and interday precision tests showed an Relative Standard Deviation (RSD) below 10.0 % and recovery ranging from 71.0 % to 118.0 % with a maximum RSD of 5.5 %. The method was applied to real samples of C. elegans treated with 200 uM of thallium acetate solution, determining the uptake and bioaccumulated Tl+ content during acute exposure. KW - ion chromatography KW - C. elegans KW - method development KW - method validation KW - ion quantification Y1 - 2022 U6 - https://doi.org/10.1016/j.jchromb.2022.123312 SN - 1570-0232 SN - 1873-376X VL - 1204 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Rausch, Ann-Kristin A1 - Brockmeyer, Robert A1 - Schwerdtle, Tanja T1 - Development and validation of a liquid chromatography tandem mass spectrometry multi-method for the determination of 41 free and modified mycotoxins in beer JF - Food chemistry N2 - A fast high performance liquid chromatography tandem mass spectrometry multi-method based on an ACN-precipitation extraction was developed for the analysis of 41 (modified) mycotoxins in beer. Validation according to the performance criteria defined by the European Commission (EC) in Commission Decision no. 657/2002 revealed good linearity (R2 > 0.99), repeatability (RSDr < 15%), reproducibility (RSDR < 15%), and recovery (79–100%). Limits of quantification ranging from 0.04 to 75 µg/L were obtained. Matrix effects varied from −67 to +319% and were compensated for using standard addition. In total, 87 beer samples, produced worldwide, were analyzed for the presence of mycotoxins with a focus on modified mycotoxins, whereof 76% of the samples were contaminated with at least one mycotoxin. The most prevalent mycotoxins were deoxynivalenol-3-glucoside (63%), HT-2 toxin (15%), and tenuazonic acid (13%). Exposure estimates of deoxynivalenol and its metabolites for German beer revealed no significant contribution to intake of deoxynivalenol. KW - Multi-mycotoxin analysis KW - Modified mycotoxins KW - LC–MS/MS KW - Beer KW - Validation Y1 - 2020 U6 - https://doi.org/10.1016/j.foodchem.2020.127801 SN - 1873-7072 SN - 0308-8146 VL - 338 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Rausch, Ann-Kristin A1 - Brockmeyer, Robert A1 - Schwerdtle, Tanja T1 - Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry JF - Analytical & bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (−85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide. KW - 2D-LC-MS/MS KW - Multi-method KW - Mycotoxins KW - Modified mycotoxins KW - Pesticides KW - Cereals Y1 - 2021 U6 - https://doi.org/10.1007/s00216-021-03239-1 SN - 1618-2650 SN - 1618-2642 VL - 413 IS - 11 SP - 3041 EP - 3054 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hackethal, Christin A1 - Kopp, Johannes Florian A1 - Sarvan, Irmela A1 - Schwerdtle, Tanja A1 - Lindtner, Oliver T1 - Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study) JF - Food chemistry N2 - Arsenic can occur in foods as inorganic and organic forms. Inorganic arsenic is more toxic than most watersoluble organic arsenic compounds such as arsenobetaine, which is presumed to be harmless for humans. Within the first German total diet study, total arsenic, inorganic arsenic, arsenobetaine, dimethylarsinic acid and monomethylarsonic acid were analyzed in various foods. Highest levels of total arsenic were found in fish, fish products and seafood (mean: 1.43 mg kg(-1); n = 39; min-max: 0.01-6.15 mg kg(-1)), with arsenobetaine confirmed as the predominant arsenic species (1.233 mg kg 1; n = 39; min-max: 0.01-6.23 mg kg (1)). In contrast, inorganic arsenic was determined as prevalent arsenic species in terrestrial foods (0.02 mg kg (1); n = 38; min-max: 0-0.11 mg kg (1)). However, the toxicity of arsenic species varies and measurements are necessary to gain information about the composition and changes of arsenic species in foods due to household processing of foods. KW - Occurrence data KW - Food KW - Total arsenic KW - Arsenic speciation KW - Inductively KW - coupled plasma mass spectrometry Y1 - 2021 U6 - https://doi.org/10.1016/j.foodchem.2020.128913 SN - 0308-8146 SN - 1873-7072 VL - 346 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Witt, Barbara A1 - Stiboller, Michael A1 - Raschke, Stefanie A1 - Friese, Sharleen A1 - Ebert, Franziska A1 - Schwerdtle, Tanja T1 - Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers JF - Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS N2 - Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases. KW - Copper KW - Astrocytes KW - Toxicity KW - Mitochondria KW - ROS KW - Trace elements Y1 - 2021 U6 - https://doi.org/10.1016/j.jtemb.2021.126711 SN - 1878-3252 VL - 65 PB - Elsevier CY - München ER - TY - CHAP A1 - Wandt, Viktoria Klara Veronika A1 - Winkelbeiner, Nicola A1 - Loßow, Kristina A1 - Kopp, Johannes A1 - Simon, Luise A1 - Ebert, Franziska A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja T1 - Trace elements, ageing, and sex. Impact on genome stability BT - Abstracts of the 87th Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology (DGPT) with contribution of the Arbeitsgemeinschaft für Angewandte Humanpharmakologie e. V. (AGAH) T2 - Naunyn-Schmiedeberg's archives of pharmacology Y1 - 2021 U6 - https://doi.org/10.1007/s00210-021-02066-6 SN - 0028-1298 SN - 1432-1912 VL - 394 IS - Suppl. 1 SP - S13 EP - S13 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis JF - Molecular Nutrition and Food Research N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - https://doi.org/10.1002/mnfr.202001176 SN - 1613-4133 SN - 1613-4125 VL - 65 IS - 8 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim ER - TY - JOUR A1 - Pan, Yuanwei A1 - Ma, Xuehua A1 - Liu, Chuang A1 - Xing, Jie A1 - Zhou, Suqiong A1 - Parshad, Badri A1 - Schwerdtle, Tanja A1 - Li, Wenzhong A1 - Wu, Aiguo A1 - Haag, Rainer T1 - Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells JF - ACS nano N2 - The existence of cancer stem cells (CSCs) poses a major obstacle for the success of current cancer therapies, especially the fact that non-CSCs can spontaneously turn into CSCs, which lead to the failure of the treatment and tumor relapse. Therefore, it is very important to develop effective strategies for the eradication of the CSCs. In this work, we have developed a CSCs-specific targeted, retinoic acid (RA)-loaded gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatform for the efficient eradication of CSCs. The nanocomposites possess good biocompatibility and exhibit effective CSCs-specific multivalent targeted capability due to hyaluronic acid (HA) decorated on the multiple attachment sites of the bioinert dendritic polyglycerol (dPG). With the help of CSCs differentiation induced by RA, the self-renewal of breast CSCs and tumor growth were suppressed by the high therapeutic efficacy of photothermal therapy (PTT) in a synergistic inhibitory manner. Moreover, the stemness gene expression and CSC-driven tumorsphere formation were significantly diminished. In addition, the in vivo tumor growth and CSCs were also effectively eliminated, which indicated superior anticancer activity, effective CSCs suppression, and prevention of relapse. Taken together, we developed a CSCs-specific targeted, RA-loaded GNSs-dPG nanoplatform for the targeted eradication of CSCs and for preventing the relapse. KW - cancer stem cells KW - dendritic polyglycerol KW - gold nanostars KW - retinoic acid KW - photothermal therapy Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.1c05452 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 9 SP - 15069 EP - 15084 PB - American Chemical Society CY - Washington ER -