TY - JOUR A1 - Deino, A. L. A1 - Dommain, René A1 - Keller, C. B. A1 - Potts, R. A1 - Behrensmeyer, A. K. A1 - Beverly, E. J. A1 - King, J. A1 - Heil, C. W. A1 - Stockhecke, M. A1 - Brown, E. T. A1 - Moerman, J. A1 - deMenocal, P. A1 - Deocampo, D. A1 - Garcin, Yannick A1 - Levin, N. E. A1 - Lupien, R. A1 - Owen, R. B. A1 - Rabideaux, N. A1 - Russell, J. M. A1 - Scott, J. A1 - Riedl, S. A1 - Brady, K. A1 - Bright, J. A1 - Clark, J. B. A1 - Cohen, A. A1 - Faith, J. T. A1 - Noren, A. A1 - Muiruri, V. A1 - Renaut, R. A1 - Rucina, S. A1 - Uno, K. T1 - Chronostratigraphic model of a high-resolution drill core record of the past million years from the Koora Basin, south Kenya Rift: Overcoming the difficulties of variable sedimentation rate and hiatuses JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The Olorgesailie Drilling Project and the related Hominin Sites and Paleolakes Drilling Project in East Africa were initiated to test hypotheses and models linking environmental change to hominin evolution by drilling lake basin sediments adjacent to important archeological and paleoanthropological sites. Drill core OL012-1A recovered 139 m of sedimentary and volcaniclastic strata from the Koora paleolake basin, southern Kenya Rift, providing the opportunity to compare paleoenvironmental influences over the past million years with the parallel record exposed at the nearby Olorgesailie archeological site. To refine our ability to link core-to-outcrop paleoenvironmental records, we institute here a methodological framework for deriving a robust age model for the complex lithostratigraphy of OL012-1A. Firstly, chronostratigraphic control points for the core were established based on 4 Ar/39Ar ages from intercalated tephra deposits and a basal trachyte flow, as well as the stratigraphic position of the Brunhes-Matuyama geomagnetic reversal. This dataset was combined with the position and duration of paleosols, and analyzed using a new Bayesian algorithm for high-resolution age-depth modeling of hiatus-bearing stratigraphic sections. This model addresses three important aspects relevant to highly dynamic, nonlinear depositional environments: 1) correcting for variable rates of deposition, 2) accommodating hiatuses, and 3) quantifying realistic age uncertainty with centimetric resolution. Our method is applicable to typical depositional systems in extensional rifts as well as to drill cores from other dynamic terrestrial or aquatic environments. We use the core age model and lithostratigraphy to examine the inter connectivity of the Koora Basin to adjacent areas and sources of volcanism. (C) 2019 Elsevier Ltd. All rights reserved. KW - Pleistocene KW - Paleolimnology KW - East Africa KW - Sedimentology KW - Radiogenic isotopes KW - Bayesian modeling KW - paleosol KW - Tephrostratigraphy KW - Magnetostratigraphy KW - Kenya Rift Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.05.009 SN - 0277-3791 VL - 215 SP - 213 EP - 231 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Qin, Qing A1 - Heil, T. A1 - Schmidt, J. A1 - Schmallegger, Max A1 - Gescheidt, Georg A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Electrochemical Fixation of Nitrogen and Its Coupling with Biomass Valorization with a Strongly Adsorbing and Defect Optimized Boron-Carbon-Nitrogen Catalyst JF - ACS Applied Energy Materials N2 - The electrochemical conversion of low-cost precursors into high-value chemicals using renewably generated electricity is a promising approach to build up an environmentally friendly energy cycle, including a storage element. The large-scale implementation of such process can, however, only be realized by the design of cost-effective electrocatalysts with high efficiency and highest stability. Here, we report the synthesis of N and B codoped porous carbons. The constructed B-N motives combine abundant unpaired electrons and frustrated Lewis pairs (FLPs). They result in desirable performance for electrochemical N-2 reduction reaction (NRR) and electrooxidation of 5-hydroxymethylfurfural (HMF) in the absence of any metal cocatalyst. A maximum Faradaic efficiency of 15.2% with a stable NH3 production rate of 21.3 mu g h(-1) mg(-1) is obtained in NRR. Besides, 2,5-furandicarboxylic acid (FDCA) is first obtained by using non-metalbased electrocatalysts at a conversion of 71% and with yield of 57%. Gas adsorption experiments elucidate the relationship between the structure and the ability of the catalysts to activate the substrate molecules. This work opens up deep insights for the rational design of non-metal-based catalysts for potential electrocatalytic applications and the possible enhancement of their activity by the introduction of FLPs and point defects at grain boundaries. KW - non-metal catalysis KW - porous carbon KW - heteroatoms KW - N-2 reduction KW - HMF oxidation Y1 - 2019 U6 - https://doi.org/10.1021/acsaem.9b01852 SN - 2574-0962 VL - 2 IS - 11 SP - 8359 EP - 8365 PB - American Chemical Society CY - Washington ER -