TY - GEN A1 - Ellis, S. C. A1 - Bauer, S. A1 - Bacigalupo, C. A1 - Bland-Hawthorn, J. A1 - Bryant, J. J. A1 - Case, S. A1 - Content, R. A1 - Fechner, T. A1 - Giannone, D. A1 - Haynes, R. A1 - Hernandez, E. A1 - Horton, A. J. A1 - Klauser, U. A1 - Lawrence, J. S. A1 - Leon-Saval, S. G. A1 - Lindley, E. A1 - Löhmannsröben, Hans-Gerd A1 - Min, S. -S. A1 - Pai, N. A1 - Roth, M. A1 - Shortridge, K. A1 - Waller, L. A1 - Xavier, Pascal A1 - Zhelem, Ross T1 - PRAXIS: an OH suppression optimised near infrared spectrograph T2 - Ground-based and Airborne Instrumentation for Astronomy VII N2 - The problem of atmospheric emission from OH molecules is a long standing problem for near-infrared astronomy. PRAXIS is a unique spectrograph which is fed by fibres that remove the OH background and is optimised specifically to benefit from OH-Suppression. The OH suppression is achieved with fibre Bragg gratings, which were tested successfully on the GNOSIS instrument. PRAXIS uses the same fibre Bragg gratings as GNOSIS in its first implementation, and will exploit new, cheaper and more efficient, multicore fibre Bragg gratings in the second implementation. The OH lines are suppressed by a factor of similar to 1000, and the expected increase in the signal-to-noise in the interline regions compared to GNOSIS is a factor of similar to 9 with the GNOSIS gratings and a factor of similar to 17 with the new gratings. PRAXIS will enable the full exploitation of OH suppression for the first time, which was not achieved by GNOSIS (a retrofit to an existing instrument that was not OH-Suppression optimised) due to high thermal emission, low spectrograph transmission and detector noise. PRAXIS has extremely low thermal emission, through the cooling of all significantly emitting parts, including the fore-optics, the fibre Bragg gratings, a long length of fibre, and the fibre slit, and an optical design that minimises leaks of thermal emission from outside the spectrograph. PRAXIS has low detector noise through the use of a Hawaii-2RG detector, and a high throughput through a efficient VPH based spectrograph. PRAXIS will determine the absolute level of the interline continuum and enable observations of individual objects via an IFU. In this paper we give a status update and report on acceptance tests. KW - Near infrared KW - spectroscopy KW - OH suppression KW - astrophotonics KW - fibre Bragg gratings Y1 - 2018 SN - 978-1-5106-1958-6 U6 - https://doi.org/10.1117/12.2311898 SN - 0277-786X SN - 1996-756X VL - 10702 PB - SPIE-INT Soc Optical Engineering CY - Bellingham ER - TY - JOUR A1 - Richter, Philipp A1 - Krause, F. A1 - Fechner, Cora A1 - Charlton, Jane C. A1 - Murphy, M. T. T1 - The neutral gas extent of galaxies as derived from weak intervening Ca II absorbers JF - Astronomy and astrophysics : an international weekly journal N2 - We present a systematic study of weak intervening CaII absorbers at low redshift (z < 0.5), based on the analysis of archival high-resolution (R >= 45 000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Delta z approximate to 100 we detected 23 intervening CaII absorbers in both the CaII H & K lines, with rest frame equivalent widths W-r,W-3934 = 15-799 m angstrom and column densities log N(CaII) = 11.25-13.04 (obtained by fitting Voigt-profile components). We obtain a bias-corrected number density of weak intervening CaII absorbers of dN/dz = 0.117 +/- 0.044 at < z(abs)> = 0.35 for absorbers with log N(CaII) >= 11.65 (W-r,W-3934 >= 32 m angstrom). This is similar to 2.6 times the value obtained for damped Lyman alpha absorbers (DLAs) at low redshift. All CaII absorbers in our sample show associated absorption by other low ions such as MgII and FeII; 45 percent of them have associated NaI absorption. From ionization modelling we conclude that intervening CaII absorption with log N(CaII) >= 11.5 arises in DLAs, sub-DLAs and Lyman-limit systems (LLS) at HI column densities of log N(HI) >= 17.4. Using supplementary HI information for nine of the absorbers we find that the CaII/HI ratio decreases strongly with increasing HI column density, indicating a column-density-dependent dust depletion of Ca. The observed column density distribution function of CaII absorption components follows a relatively steep power law, f(N) proportional to N-beta, with a slope of -beta = -1.68, which again points towards an enhanced dust depletion in high column density systems. The relatively large cross section of these absorbers together with the frequent detection of CaII absorption in high-velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening CaII systems trace (partly) neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Based on the recently measured detection rate of CaII absorption in the Milky Way HVCs we estimate that the mean (projected) CaII covering fraction of galaxies and their gaseous halos is < f(c,CaII)> = 0.33. Using this value and considering all galaxies with luminosities L >= 0.05 L-star we calculate that the characteristic radial extent of (partly) neutral gas clouds with log N(HI) >= 17.4 around low-redshift galaxies is R-HVC approximate to 55 kpc. KW - galaxies: halos KW - galaxies: formation KW - galaxies: ISM KW - intergalactic medium KW - quasars: absorption lines Y1 - 2011 U6 - https://doi.org/10.1051/0004-6361/201015566 SN - 0004-6361 VL - 528 IS - 4 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Richter, Philipp A1 - Wakker, Bart P. A1 - Fechner, Cora A1 - Herenz, Peter A1 - Tepper-Garcia, T. A1 - Fox, Andrew J. T1 - An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies JF - Climate : open access journal N2 - Aims. Doubly ionized silicon (Si III) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening Si III-selected absorbers and study the properties of the warm circumgalactic medium (CGM) around low-redshift (z <= 0.1) galaxies. Methods. We analyzed the UV absorption spectra of 303 extragalactic background sources, as obtained with the Cosmic Origins Spectrograph (COS) on-board the Hubble Space Telescope (HST). We developed a geometrical model for the absorption-cross section of the CGM around the local galaxy population and compared the observed Si III absorption statistics with predictions provided by the model. We also compared redshifts and positions of the absorbers with those of similar to 64 000 galaxies using archival galaxy-survey data to investigate the relation between intervening Si III absorbers and the CGM. Results. Along a total redshift path of Delta z approximate to 24, we identify 69 intervening Si III systems that all show associated absorption from other low and high ions (e.g., H I, Si II, Si IV, C II, C IV). We derive a bias-corrected number density of dN/dz(Si III) = 2.5 +/- 0.4 for absorbers with column densities log N(Si III) > 12.2, which is similar to 3 times the number density of strong Mg II systems at z = 0. This number density matches the expected cross section of a Si III absorbing CGM around the local galaxy population with a mean covering fraction of < f(c)> = 0.69. For the majority (similar to 60 percent) of the absorbers, we identify possible host galaxies within 300 km s(-1) of the absorbers and derive impact parameters rho < 200 kpc, demonstrating that the spatial distributions of Si III absorbers and galaxies are highly correlated. Conclusions. Our study indicates that the majority of Si III-selected absorbers in our sample trace the CGM of nearby galaxies within their virial radii at a typical covering fraction of similar to 70 percent. We estimate that diffuse gas in the CGM around galaxies, as traced by Si III, contains substantially more (more than twice as much) baryonic mass than their neutral interstellar medium. KW - galaxies: halos KW - galaxies: formation KW - intergalactic medium KW - quasars: absorption lines Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527038 SN - 1432-0746 VL - 590 PB - EDP Sciences CY - Les Ulis ER -