TY - JOUR A1 - Kollmann, Peter A1 - Roussos, Elias A1 - Clark, George A1 - Cooper, John F. A1 - Sturner, Steven J. A1 - Kotova, Anna A1 - Regoli, Leonardo A1 - Shprits, Yuri A1 - Aseev, Nikita A1 - Krupp, Norbert T1 - Spectra of Saturn's proton belts revealed JF - Icarus N2 - Saturn is permanently surrounded by 6 discrete proton radiation belts that are rigidly separated by the orbits of its inner moons and dense rings. These radiation belts are ideal environments to study the details of radial diffusion and the CRAND source process, yet progress has been hindered by the fact that the energy spectra are not known with certainty: Reanalysis of the response functions of the LEMMS instrument on-board the Cassini orbiter has shown that measurements of less than or similar to 10 MeV protons may be easily contaminated by greater than or similar to 10 MeV protons and that many available measurements characterize a very broad energy range, so that the calculation of an energy-resolved spectrum is not as straightforward as previously assumed. Here we use forward modeling of the measurements based on the instrument response and combine this technique where useful with numerical modeling of the proton belt physics in order to determine Saturn's spectra with higher certainty. We find significant proton intensities up to approximate to 1 GeV. While earlier studies reported on proton spectra roughly following a power law with exponent approximate to -2, our more advanced analysis shows harder spectra with exponent approximate to -1. The observed spectra provide independent confirmation that Saturn's proton belts are sourced by CRAND and are consistent with the provided protons being subsequently cooled in the tenuous gas originating from Saturn or Enceladus. The intensities at Saturn are found to be lower than at Jupiter and Earth, which is also consistent with the source of Saturn being exclusively CRAND, while the other planets can draw from additional processes. Our new spectra can be used in the future to further our understanding of Saturn's proton belts and the respective physical processes that occur at other magnetized planets in general. Also, the spectra have applications for several topics of planetary science, such as space weathering of Saturn's moons and rings, and can be useful to constrain properties of the main rings through their production of secondary particles. KW - Radiation belts KW - Saturn KW - CRAND KW - Proton Y1 - 2022 U6 - https://doi.org/10.1016/j.icarus.2021.114795 SN - 0019-1035 SN - 1090-2643 VL - 376 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Shrader, C. R. A1 - Hamaguchi, K. A1 - Sturner, Steven J. A1 - Oskinova, Lidia M. A1 - Almeyda, T. A1 - Petre, R. T1 - Hifg-energy properties of the enigmatic be STAR gamma Cassiopeiae JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present the results of a broadband X-ray study of the enigmatic Be star Gamma Cassiopeiae (herein gamma Cas) based on observations made with both the Suzaku and INTEGRAL observatories.. Cas has long been recognized as the prototypical example of a small subclass of Be stars with moderately strong X-ray emission dominated by a hot thermal component in the 0.5-12 keV energy range (L-x approximate to 10(32)-10(33) erg s(-1)). This places them at the high end of the known luminosity distribution for stellar emission, but several orders of magnitude below typical accretion-powered Be X-ray binaries. The INTEGRAL observations spanned an eight-year baseline and represent the deepest measurement to date at energies above similar to 50 keV. We find that the INTEGRAL data are consistent within statistics to a constant intensity source above 20 keV, with emission extending up to similar to 100 keV, and that searches for all of the previously reported periodicities of the system at lower energies led to null results. We further find that our combined Suzaku and INTEGRAL spectrum, which we suggest is the most accurate broadband X-ray measurement of gamma Cas to date, is fitted extremely well with a thermal plasma emission model with a single absorption component. We found no compelling need for an additional non-thermal high-energy component. We discuss these results in the context of a currently favored models for gamma Cas and its analogs. KW - gamma rays: stars KW - stars: emission-line, Be KW - stars: individual (gamma Cassiopeiae) KW - white dwarfs KW - X-rays: binaries KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/799/1/84 SN - 0004-637X SN - 1538-4357 VL - 799 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -