TY - CHAP A1 - Carlsohn, Anja A1 - Weber, Josefine A1 - Müller, Juliane A1 - Stuwe, Anja A1 - Müller, Steffen A1 - Mayer, Frank T1 - Dietary intake to reduce body mass before competition in german judo athletes T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2012 SN - 0195-9131 VL - 44 SP - 109 EP - 109 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - CHAP A1 - Engel, Tilman A1 - Müller, Juliane A1 - Müller, Steffen A1 - Reschke, Antje A1 - Kopinski, Stephan A1 - Mayer, Frank T1 - Validity and reliability of a new customised split-belt treadmill provoking unexpected walking perturbations T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 462 EP - 462 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - CHAP A1 - Hain, Gerrit A1 - Müller, Juliane A1 - Müller, Steffen A1 - Reschke, Antje A1 - Mayer, Frank T1 - Reliability of an in-vivo 3-segmental kinematic trunk model in a one-handed lifting task T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 174 EP - 174 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Sensorimotor exercises and enhanced trunk function BT - a randomized controlled trial JF - International journal of sports medicine N2 - The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes. Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24Nm 95%CI +/- 19Nm; Rotation: + 19Nm 95%CI +/- 13Nm) and RT (Extension: +35Nm 95%CI +/- 16Nm; Rotation: +5Nm 95%CI +/- 4Nm) compared to CG (Extension: -4Nm 95%CI +/- 16Nm; Rotation: -2Nm 95%CI +/- 4Nm) was present (p<0.05). KW - core KW - training intervention KW - prevention KW - perturbation KW - MiSpEx* Y1 - 2018 U6 - https://doi.org/10.1055/a-0592-7286 SN - 0172-4622 SN - 1439-3964 VL - 39 IS - 7 SP - 555 EP - 563 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mugele, Hendrick A1 - Plummer, Ashley A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effect on injury rates JF - PLOS ONE N2 - Introduction Annually, 2 million sports-related injuries are reported in Germany of which athletes contribute to a large proportion. Multiple sport injury prevention programs designed to decrease acute and overuse injuries in athletes have been proven effective. Yet, the programs’ components, general or sports-specific, that led to these positive effects are uncertain. Despite not knowing about the superiority of sports-specific injury prevention programs, coaches and athletes alike prefer more specialized rather than generalized exercise programs. Therefore, this systematic review aimed to present the available evidence on how general and sports-specific prevention programs affect injury rates in athletes. Methods PubMed and Web of Science were electronically searched throughout April 2018. The inclusion criteria were publication dates Jan 2006–Dec 2017, athletes (11–45 years), exercise-based injury prevention programs and injury incidence. The methodological quality was assessed with the Cochrane Collaboration assessment tools. Results Of the initial 6619 findings, 15 studies met the inclusion criteria. In addition, 13 studies were added from reference lists and external sources making a total of 28 studies. Of which, one used sports-specific, seven general and 20 mixed prevention strategies. Twenty-four studies revealed reduced injury rates. Of the four ineffective programs, one was general and three mixed. Conclusion The general and mixed programs positively affect injury rates. Sports-specific programs are uninvestigated and despite wide discussion regarding the definition, no consensus was reached. Defining such terminology and investigating the true effectiveness of such IPPs is a potential avenue for future research. KW - randomized-controlled-trial KW - cruciate ligament injury KW - amateur soccer players KW - hamstring injuries KW - training-program KW - exercise program KW - adolescent sport KW - youth football KW - team handball KW - risk-factors Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0205635 SN - 1932-6203 VL - 13 IS - 10 SP - 1 EP - 16 PB - Public Library of Science CY - San Francisco ER - TY - GEN A1 - Mugele, Hendrik A1 - Plummer, Ashley A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effect on injury rates T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Introduction Annually, 2 million sports-related injuries are reported in Germany of which athletes contribute to a large proportion. Multiple sport injury prevention programs designed to decrease acute and overuse injuries in athletes have been proven effective. Yet, the programs’ components, general or sports-specific, that led to these positive effects are uncertain. Despite not knowing about the superiority of sports-specific injury prevention programs, coaches and athletes alike prefer more specialized rather than generalized exercise programs. Therefore, this systematic review aimed to present the available evidence on how general and sports-specific prevention programs affect injury rates in athletes. Methods PubMed and Web of Science were electronically searched throughout April 2018. The inclusion criteria were publication dates Jan 2006–Dec 2017, athletes (11–45 years), exercise-based injury prevention programs and injury incidence. The methodological quality was assessed with the Cochrane Collaboration assessment tools. Results Of the initial 6619 findings, 15 studies met the inclusion criteria. In addition, 13 studies were added from reference lists and external sources making a total of 28 studies. Of which, one used sports-specific, seven general and 20 mixed prevention strategies. Twenty-four studies revealed reduced injury rates. Of the four ineffective programs, one was general and three mixed. Conclusion The general and mixed programs positively affect injury rates. Sports-specific programs are uninvestigated and despite wide discussion regarding the definition, no consensus was reached. Defining such terminology and investigating the true effectiveness of such IPPs is a potential avenue for future research. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 481 KW - randomized-controlled-trial KW - cruciate ligament injury KW - amateur soccer players KW - hamstring injuries KW - training-program KW - exercise program KW - adolescent sport KW - youth football KW - team handball KW - risk-factors Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419935 IS - 481 ER - TY - JOUR A1 - Müller, Juliane A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Mayer, Frank A1 - Müller, Steffen T1 - Neuromuscular trunk activation patterns in back pain patients during one-handed lifting JF - World journal of orthopedics N2 - AIM To analyze neuromuscular activity patterns of the trunk in healthy controls (H) and back pain patients (BPP) during one-handed lifting of light to heavy loads. METHODS RESULTS Seven subjects (3m/4f; 32 +/- 7 years; 171 +/- 7 cm; 65 +/- 11 kg) were assigned to BPP (pain grade >= 2) and 36 (13m/23f; 28 +/- 8 years; 174 +/- 10 cm; 71 +/- 12 kg) to H (pain grade <= 1). H and BPP did not differ significantly in anthropometrics (P > 0.05). All subjects were able to lift the light and middle loads, but 57% of BPP and 22% of H were not able to lift the heavy load (all women) chi(2) analysis revealed statistically significant differences in task failure between H vs BPP (P = 0.03). EMG-RMS ranged from 33% +/- 10%/30% +/- 9% (DL, 1 kg) to 356% +/- 148%/283% +/- 80% (VR, 20 kg) in H/BPP with no statistical difference between groups regardless of load (P > 0.05). However, the EMG-RMS of the VR was greatest in all lifting tasks for both groups and increased with heavier loads. CONCLUSION Heavier loading leads to an increase (2-to 3-fold) in trunk muscle activity with comparable patterns. Heavy loading (20 kg) leads to task failure, especially in women with back pain. KW - Lifting KW - Core KW - Trunk KW - EMG KW - MISPEX Y1 - 2016 U6 - https://doi.org/10.5312/wjo.v8.i2.142 SN - 2218-5836 VL - 8 IS - 2 SP - 142 EP - 148 PB - Baishideng Publishing Group CY - Pleasanton ER - TY - GEN A1 - Müller, Juliane A1 - Engel, Tilman A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects N2 - Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 317 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394931 ER - TY - JOUR A1 - Müller, Juliane A1 - Engel, Tilman A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects JF - PLoS one N2 - Background Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Methods Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as side right:side left ratio (Sright:Sleft). The coefficient of variation (CV;%) was calculated (EMG-RMS;ROM) to evaluate variability between the 15 perturbations for all groups. With respect to unequal distribution of participants to groups, an additional matched-group analysis was conducted. Fourteen healthy controls out of group H were sex-, age- and anthropometrically matched (group Hmatched) to the BPP. Results No group differences were observed for EMG-RMS or CV analysis (EMG/ROM) (p>0.025). Co-contraction analysis revealed no differences for V:R and Srigth:Sleft between the groups (p>0.025). BPP showed an increased TON and TMAX, being significant for Mm. rectus abdominus (p = 0.019) and erector spinae T9/L3 (p = 0.005/p = 0.015). ROM analysis over the unperturbed stride cycle revealed no differences between groups (p>0.025). Normalization of perturbed to unperturbed step lead to significant differences for the lumbar segment (LA) in lateral flexion with BPP showing higher normalized ROM compared to Hmatched (p = 0.02). BPP showed a significant higher flexed posture (UTA (p = 0.02); LTA (p = 0.004)) during normal walking (Amean). Trunk posture (Amean) during perturbation showed higher trunk extension values in LTA segments for H/Hmatched compared to BPP (p = 0.003). Matched group (BPP vs. Hmatched) analysis did not show any systematic changes of all results between groups. Conclusion BPP present impaired muscle response times and trunk posture, especially in the sagittal and transversal planes, compared to H. This could indicate reduced trunk stability and higher loading during gait perturbations. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0174034 SN - 1932-6203 VL - 12 IS - 3 PB - PLoS CY - Lawrence, Kan. ER - TY - JOUR A1 - Müller, Juliane A1 - Hadzic, Miralem A1 - Mugele, Hendrik A1 - Stoll, Josefine A1 - Müller, Steffen A1 - Mayer, Frank T1 - Effect of high-intensity perturbations during core-specific sensorimotor exercises on trunk muscle activation JF - Journal of biomechanics N2 - Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk. However, the influence of high-intensity perturbations on training efficiency is unclear within this context. Sixteen participants (29 +/- 2 yrs; 175 +/- 8 cm; 69 +/- 13 kg) were prepared with a 12-lead bilateral trunk EMG. Warm-up on a dynamometer was followed by maximum voluntary isometric trunk (flex/ext) contraction (MVC). Next, participants performed four conditions for a one-legged stance with hip abduction on a stable surface (HA) repeated randomly on an unstable surface (HAP), on a stable surface with perturbation (HA + P), and on an unstable surface with perturbation (HAP + P). Afterwards, bird dog (BD) was performed under the same conditions (BD, BDP, BD + P, BDP + P). A foam pad under the foot (HA) or the knee (BD) was used as an unstable surface. Exercises were conducted on a moveable platform. Perturbations (ACC 50 m/sec(2);100 ms duration;10rep.) were randomly applied in the anterior-posterior direction. The root mean square (RMS) normalized to MVC (%) was calculated (whole movement cycle). Muscles were grouped into ventral right and left (VR;VL), and dorsal right and left (DR;DL). Ventral Dorsal and right-left ratios were calculated (two way repeated-measures ANOVA;alpha = 0,05). Amplitudes of all muscle groups in bird dog were higher compared to hip abduction (p <= 0.0001; Range: BD: 14 +/- 3% (BD;VR) to 53 +/- 4%; HA: 7 +/- 2% (HA;DR) to 16 +/- 4% (HA;DR)). EMG-RMS showed significant differences (p < 0.001) between conditions and muscle groups per exercise. Interaction effects were only significant for HA (p = 0.02). No significant differences were present in EMG ratios (p > 0.05). Additional high-intensity perturbations during core-specific sensorimotor exercises lead to increased neuromuscular activity and therefore higher exercise intensities. However, the beneficial effects on trunk function remain unclear. Nevertheless, BD is more suitable to address trunk muscles. KW - Split-belt treadmill KW - EMG KW - Core stability KW - MiSpEx Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiomech.2017.12.013 SN - 0021-9290 SN - 1873-2380 VL - 70 SP - 212 EP - 218 PB - Elsevier CY - Oxford ER -