TY - GEN A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 284 KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90108 ER - TY - JOUR A1 - Verch, Ronald A1 - Hirschmüller, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank A1 - Müller, Steffen T1 - Is in-toing gait physiological in children? BT - Results of a large cohort study in 5910 healthy (pre-) school children JF - Gait & posture N2 - Research question: This study aimed to establish reference values in 1-14 year old healthy children and to implement FPA-percentile curves for daily clinical use. Methods: 5910 healthy children performed at least 3 repetitions of barefoot walking over an instrumented walkway using a pressure measurement platform. The FPA [degrees] was extracted and analyzed by age and gender (mean +/- standard deviation; median with percentiles, MANOVA (age, gender) and Wilcoxon-Signed-Rank test for intra-individual side differences (alpha = 0.05). Results: FPA maximum was observed in 2-year-old children and diminished significant until the age of 4 to moderate out-toeing. For ages 5-14, no statistically significant differences in FPA values were present (p > 0.05). MANOVA confirmed age (p < 0.001) and gender (p < 0.001) as significant FPA influencing factors, without combined effect (p > 0.05). In every age group, right feet showed significantly greater out-toeing (p < 0.05). Significance: Percentile values indicate a wide FPA range in children. FPA development in young children shows a spontaneous shift towards moderate external rotation (age 2-4), whereby in-toeing <= 1-5 degrees can be present, but can return to normal. Bilateral in-toeing after the age of four and unilateral in-toeing after the age of seven should be monitored. KW - Foot progression angle KW - Children KW - In-toeing KW - Out-toeing KW - Gait Y1 - 2018 U6 - https://doi.org/10.1016/j.gaitpost.2018.08.019 SN - 0966-6362 SN - 1879-2219 VL - 66 SP - 70 EP - 75 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Mueller, Steffen A1 - Mayer, Frank T1 - Dose-response relationship of core-specific sensorimotor interventions in healthy, well-trained participants BT - study protocol for a (MiSpEx) randomized controlled trial JF - Trials N2 - Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function. KW - Sensorimotor training KW - Perturbation KW - Exercise KW - MiSpEx Y1 - 2018 U6 - https://doi.org/10.1186/s13063-018-2799-9 SN - 1745-6215 VL - 19 PB - BMC CY - London ER - TY - JOUR A1 - Rector, Michael V. A1 - Intziegianni, Konstantina A1 - Müller, Steffen A1 - Mayer, Frank A1 - Cassel, Michael T1 - Reproducibility of an ankle joint rotation correction method for assessment of Achilles tendon elongation JF - Isokinetics and exercise science : official journal of the European Isokinetic Society N2 - BACKGROUND: The Achilles tendon (AT) requires optimal material and mechanical properties to function properly. Calculation of these properties depends on accurate measurement of input parameters (i.e. tendon elongation). However, the measurement of AT elongation with ultrasound during maximum voluntary isometric contraction (MVIC) is overestimated by ankle joint rotation (AJR). Methods to correct the influence of this rotation on AT elongation exist, yet their reproducibility in clinical settings is unknown. OBJECTIVE: To evaluate the test-retest reproducibility of AT elongation during MVIC after AJR correction. METHODS: Ten participants attended test and retest measurements where they performed plantar-flexion MVIC on a dynamometer. Simultaneously, ultrasound recorded AT elongation as the displacement of the medial gastrocnemius-myotendinous junction, while an electrogoniometer measured AJR. The ankle was then passively rotated to the AJR achieved during MVIC and AT elongation again determined. Elongation was corrected by subtracting this passive AT elongation from the total AT elongation during MVIC. Reproducibility was evaluated using ICC (2.1), test-retest variability (TRV, %), Bland-Altman analyses (Bias +/- LoA [1.96*SD]) and standard error of the measurement (SEM). RESULTS: Corrected AT elongation reproducibility exhibited an ICC = 0.79, SEM = 0.2 cm and TRV = 20 +/- 19%. Bias +/- LoA were determined to be 0.0 +/- 0.8 cm. CONCLUSIONS: Using this ultrasound and electrogoniometer-based method, corrected AT elongation can be assessed reproducibly. KW - Ultrasonography KW - Achilles tendon KW - reproducibility KW - isokinetic KW - ankle joint rotation Y1 - 2017 U6 - https://doi.org/10.3233/IES-160644 SN - 0959-3020 SN - 1878-5913 VL - 25 IS - 1 SP - 47 EP - 52 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew James A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass JF - BMC sports science, medicine and rehabilitation N2 - Background Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p <= 0.05; Bonferroni adjusted alpha = 0.008). Results PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water KW - pipe KW - rotator cuff Y1 - 2020 U6 - https://doi.org/10.1186/s13102-020-00168-x SN - 2052-1847 VL - 12 IS - 1 PB - BioMed Central CY - London ER - TY - GEN A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3–1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 319 KW - SEMG-pattern KW - back pain KW - drop jump KW - neuromuscular KW - performance KW - pre-activity KW - trunk KW - young athletes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-395261 ER - TY - GEN A1 - Appiah-Dwomoh, Edem Korkor A1 - Müller, Steffen A1 - Hadzic, Miralem A1 - Mayer, Frank T1 - Star Excursion Balance Test in young athletes with back pain N2 - The Star Excursion Balance Test (SEBT) is effective in measuring dynamic postural control (DPC). This research aimed to determine whether DPC measured by the SEBT in young athletes (YA) with back pain (BP) is different from those without BP (NBP). 53 BP YA and 53 NBP YA matched for age, height, weight, training years, training sessions/week and training minutes/session were studied. Participants performed 4 practice trials after which 3 measurements in the anterior, posteromedial and posterolateral SEBT reach directions were recorded. Normalized reach distance was analyzed using the mean of all 3 measurements. There was no statistical significant difference (p > 0.05) between the reach distance of BP (87.2 ± 5.3, 82.4 ± 8.2, 78.7 ± 8.1) and NBP (87.8 ± 5.6, 82.4 ± 8.0, 80.0 ± 8.8) in the anterior, posteromedial and posterolateral directions respectively. DPC in YA with BP, as assessed by the SEBT, was not different from NBP YA. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 337 KW - young athletes KW - back pain KW - star excursion balance test Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400441 ER - TY - GEN A1 - Cassel, Michael A1 - Intziegianni, Konstantina A1 - Risch, Lucie A1 - Müller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes BT - A Longitudinal Study N2 - Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 355 KW - Achilles and patellar tendon KW - non-athletes KW - sonography KW - training adaptation KW - young athletes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403823 ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Mueller, Juliane A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 +/- 1.3 y; 176 +/- 11 cm; 68 +/- 11 kg; 12.4 +/- 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 +/- 1.3 y; 174 +/- 7 cm; 67 +/- 8 kg; 14.9 +/- 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized toMIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 SP - 124 EP - 132 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew James A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p <= 0.05; Bonferroni adjusted alpha = 0.008). Results PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 867 KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water pipe KW - rotator cuff Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509366 SN - 1866-8364 IS - 1 ER - TY - GEN A1 - Plummer, Ashley A1 - Mugele, Hendrik A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effects on performance T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Introduction Injury prevention programs (IPPs) are an inherent part of training in recreational and professional sports. Providing performance-enhancing benefits in addition to injury prevention may help adjust coaches and athletes’ attitudes towards implementation of injury prevention into daily routine. Conventional thinking by players and coaches alike seems to suggest that IPPs need to be specific to one’s sport to allow for performance enhancement. The systematic literature review aims to firstly determine the IPPs nature of exercises and whether they are specific to the sport or based on general conditioning. Secondly, can they demonstrate whether general, sports-specific or even mixed IPPs improve key performance indicators with the aim to better facilitate long-term implementation of these programs? Methods PubMed and Web of Science were electronically searched throughout March 2018. The inclusion criteria were randomized control trials, publication dates between Jan 2006 and Feb 2018, athletes (11–45 years), injury prevention programs and included predefined performance measures that could be categorized into balance, power, strength, speed/agility and endurance. The methodological quality of included articles was assessed with the Cochrane Collaboration assessment tools. Results Of 6619 initial findings, 22 studies met the inclusion criteria. In addition, reference lists unearthed a further 6 studies, making a total of 28. Nine studies used sports specific IPPs, eleven general and eight mixed prevention strategies. Overall, general programs ranged from 29–57% in their effectiveness across performance outcomes. Mixed IPPs improved in 80% balance outcomes but only 20–44% in others. Sports-specific programs led to larger scale improvements in balance (66%), power (83%), strength (75%), and speed/agility (62%). Conclusion Sports-specific IPPs have the strongest influence on most performance indices based on the significant improvement versus control groups. Other factors such as intensity, technical execution and compliance should be accounted for in future investigations in addition to exercise modality. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 591 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441131 SN - 1866-8364 IS - 591 ER - TY - GEN A1 - Eichler, Sarah A1 - Rabe, Sophie A1 - Salzwedel, Annett A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Tilgner, Nina A1 - John, Michael A1 - Wegschneider, Karl A1 - Mayer, Frank A1 - Völler, Heinz T1 - Effectiveness of an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement BT - Study protocol for a multicenter, superiority, no-blinded randomized controlled trial N2 - Background Total hip or knee replacement is one of the most frequently performed surgical procedures. Physical rehabilitation following total hip or knee replacement is an essential part of the therapy to improve functional outcomes and quality of life. After discharge from inpatient rehabilitation, a subsequent postoperative exercise therapy is needed to maintain functional mobility. Telerehabilitation may be a potential innovative treatment approach. We aim to investigate the superiority of an interactive telerehabilitation intervention for patients after total hip or knee replacement, in comparison to usual care, regarding physical performance, functional mobility, quality of life and pain. Methods/design This is an open, randomized controlled, multicenter superiority study with two prospective arms. One hundred and ten eligible and consenting participants with total knee or hip replacement will be recruited at admission to subsequent inpatient rehabilitation. After comprehensive, 3-week, inpatient rehabilitation, the intervention group performs a 3-month, interactive, home-based exercise training with a telerehabilitation system. For this purpose, the physiotherapist creates an individual training plan out of 38 different strength and balance exercises which were implemented in the system. Data about the quality and frequency of training are transmitted to the physiotherapist for further adjustment. Communication between patient and physiotherapist is possible with the system. The control group receives voluntary, usual aftercare programs. Baseline assessments are investigated after discharge from rehabilitation; final assessments 3 months later. The primary outcome is the difference in improvement between intervention and control group in 6-minute walk distance after 3 months. Secondary outcomes include differences in the Timed Up and Go Test, the Five-Times-Sit-to-Stand Test, the Stair Ascend Test, the Short-Form 36, the Western Ontario and McMaster Universities Osteoarthritis Index, the International Physical Activity Questionnaire, and postural control as well as gait and kinematic parameters of the lower limbs. Baseline-adjusted analysis of covariance models will be used to test for group differences in the primary and secondary endpoints. Discussion We expect the intervention group to benefit from the interactive, home-based exercise training in many respects represented by the study endpoints. If successful, this approach could be used to enhance the access to aftercare programs, especially in structurally weak areas. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 353 KW - Aftercare KW - Exercise therapy KW - Home-based KW - Telerehabilitation KW - Total hip replacement KW - Total knee replacement Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403702 ER - TY - GEN A1 - Mugele, Hendrik A1 - Plummer, Ashley A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effect on injury rates T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Introduction Annually, 2 million sports-related injuries are reported in Germany of which athletes contribute to a large proportion. Multiple sport injury prevention programs designed to decrease acute and overuse injuries in athletes have been proven effective. Yet, the programs’ components, general or sports-specific, that led to these positive effects are uncertain. Despite not knowing about the superiority of sports-specific injury prevention programs, coaches and athletes alike prefer more specialized rather than generalized exercise programs. Therefore, this systematic review aimed to present the available evidence on how general and sports-specific prevention programs affect injury rates in athletes. Methods PubMed and Web of Science were electronically searched throughout April 2018. The inclusion criteria were publication dates Jan 2006–Dec 2017, athletes (11–45 years), exercise-based injury prevention programs and injury incidence. The methodological quality was assessed with the Cochrane Collaboration assessment tools. Results Of the initial 6619 findings, 15 studies met the inclusion criteria. In addition, 13 studies were added from reference lists and external sources making a total of 28 studies. Of which, one used sports-specific, seven general and 20 mixed prevention strategies. Twenty-four studies revealed reduced injury rates. Of the four ineffective programs, one was general and three mixed. Conclusion The general and mixed programs positively affect injury rates. Sports-specific programs are uninvestigated and despite wide discussion regarding the definition, no consensus was reached. Defining such terminology and investigating the true effectiveness of such IPPs is a potential avenue for future research. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 481 KW - randomized-controlled-trial KW - cruciate ligament injury KW - amateur soccer players KW - hamstring injuries KW - training-program KW - exercise program KW - adolescent sport KW - youth football KW - team handball KW - risk-factors Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419935 IS - 481 ER - TY - GEN A1 - Appiah-Dwomoh, Edem Korkor A1 - Müller, Steffen A1 - Mayer, Frank T1 - Reproducibility of Static and Dynamic Postural Control Measurement in Adolescent Athletes with Back Pain T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Static (one-legged stance) and dynamic (star excursion balance) postural control tests were performed by 14 adolescent athletes with and 17 without back pain to determine reproducibility. The total displacement, mediolateral and anterior-posterior displacements of the centre of pressure in mm for the static, and the normalized and composite reach distances for the dynamic tests were analysed. Intraclass correlation coefficients, 95% confidence intervals, and a Bland-Altman analysis were calculated for reproducibility. Intraclass correlation coefficients for subjects with (0.54 to 0.65), (0.61 to 0.69) and without (0.45 to 0.49), (0.52 to 0.60) back pain were obtained on the static test for right and left legs, respectively. Likewise, (0.79 to 0.88), (0.75 to 0.93) for subjects with and (0.61 to 0.82), (0.60 to 0.85) for those without back pain were obtained on the dynamic test for the right and left legs, respectively. Systematic bias was not observed between test and retest of subjects on both static and dynamic tests. The one-legged stance and star excursion balance tests have fair to excellent reliabilities on measures of postural control in adolescent athletes with and without back pain. They can be used as measures of postural control in adolescent athletes with and without back pain. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 470 KW - Excursion Balance Test KW - Female Collegiate Soccer KW - Test-Retest Reliability KW - Lower-Extremity Injury KW - Lumbar Spine KW - Performance KW - Basketball KW - Children KW - Prevalence KW - Stability Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-417526 IS - 470 ER - TY - JOUR A1 - Plummer, Ashley A1 - Mugele, Hendrik A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effects on performance JF - PLoS ONE N2 - Introduction Injury prevention programs (IPPs) are an inherent part of training in recreational and professional sports. Providing performance-enhancing benefits in addition to injury prevention may help adjust coaches and athletes’ attitudes towards implementation of injury prevention into daily routine. Conventional thinking by players and coaches alike seems to suggest that IPPs need to be specific to one’s sport to allow for performance enhancement. The systematic literature review aims to firstly determine the IPPs nature of exercises and whether they are specific to the sport or based on general conditioning. Secondly, can they demonstrate whether general, sports-specific or even mixed IPPs improve key performance indicators with the aim to better facilitate long-term implementation of these programs? Methods PubMed and Web of Science were electronically searched throughout March 2018. The inclusion criteria were randomized control trials, publication dates between Jan 2006 and Feb 2018, athletes (11–45 years), injury prevention programs and included predefined performance measures that could be categorized into balance, power, strength, speed/agility and endurance. The methodological quality of included articles was assessed with the Cochrane Collaboration assessment tools. Results Of 6619 initial findings, 22 studies met the inclusion criteria. In addition, reference lists unearthed a further 6 studies, making a total of 28. Nine studies used sports specific IPPs, eleven general and eight mixed prevention strategies. Overall, general programs ranged from 29–57% in their effectiveness across performance outcomes. Mixed IPPs improved in 80% balance outcomes but only 20–44% in others. Sports-specific programs led to larger scale improvements in balance (66%), power (83%), strength (75%), and speed/agility (62%). Conclusion Sports-specific IPPs have the strongest influence on most performance indices based on the significant improvement versus control groups. Other factors such as intensity, technical execution and compliance should be accounted for in future investigations in addition to exercise modality. Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0221346 SN - 1932-6203 VL - 14 IS - 8 PB - PLOS 1 CY - San Francisco ER - TY - JOUR A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Cassel, Michael A1 - Müller, Steffen A1 - Mayer, Frank T1 - Gender-specific neuromuscular activity of the M. peroneus longus in healthy runners : a descriptive laboratory study N2 - Background: Gender-specific neuromuscular activity for the ankle (e.g., peroneal muscle) is currently not known. This knowledge may contribute to the understanding of overuse injury mechanisms. The purpose was therefore to analyse the neuromuscular activity of the peroneal muscle in healthy runners. Methods: Fifty-three male and 54 female competitive runners were tested on a treadmill at 3.33 m s(-1). Neuromuscular activity of the M. peroneus longus was measured by electromyography and analysed in the time domain (onset of activation, time of maximum of activation, total time of activation) in % of stride time in relation to touchdown (= 1.0). Additionally, mean amplitudes for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Findings: Onset of activation (mean; female: 0.86/male: 0.90, p<0.0001) and time of maximum of activation (female: 1.13/male: 1.16, p<0.0001) occurred earlier in female compared to male and the total time of activation was longer in women (female: 0.42/male: 0.39, p=0.0036). In preactivation, women showed higher amplitudes (+ 21%) compared to men (female: 1.16/male: 0.92, p<0.0001). Activity during weight acceptance (female: 2.26/male: 2.41, p = 0.0039) and push-off (female: 0.93/male: 1.07, p = 0.0027) were higher in men. Interpretation: Activation strategies of the peroneal muscle appear to be gender-specific. Higher preactivation amplitudes in females indicate a different neuromuscular control in anticipation of touchdown ("pre-programmed activity"). These data may help interpret epidemiologically reported differences between genders in overuse injury frequency and localisation. Y1 - 2010 UR - http://www.sciencedirect.com/science/journal/02680033 U6 - https://doi.org/10.1016/j.clinbiomech.2010.06.009 SN - 0268-0033 ER - TY - CHAP A1 - Kopinski, Stephan A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Torque-EMG relationship of lower back muscles - a pilot study T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2013 SN - 0195-9131 SN - 1530-0315 VL - 45 IS - 5 SP - 7 EP - 8 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - CHAP A1 - Intziegianni, Konstantina A1 - Cassel, Michael A1 - Müller, Steffen A1 - Mayer, Frank T1 - Ultrasound evaluation of the patellar tendon cross-sectional area and its relation to maximum force T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2012 SN - 0195-9131 VL - 44 SP - 714 EP - 714 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Mayer, Frank A1 - Scharhag-Rosenberger, Friederike A1 - Carlsohn, Anja A1 - Cassel, Michael A1 - Müller, Steffen A1 - Scharhag, Jürgen T1 - The intensity and effects of strength training in the elderly JF - Deutsches Ärzteblatt international : a weekly online journal of clinical medicine and public health N2 - Background: The elderly need strength training more and more as they grow older to stay mobile for their everyday activities. The goal of training is to reduce the loss of muscle mass and the resulting loss of motor function. The dose-response relationship of training intensity to training effect has not yet been fully elucidated. Methods: PubMed was selectively searched for articles that appeared in the past 5 years about the effects and dose-response relationship of strength training in the elderly. Results: Strength training in the elderly (> 60 years) increases muscle strength by increasing muscle mass, and by improving the recruitment of motor units, and increasing their firing rate. Muscle mass can be increased through training at an intensity corresponding to 60% to 85% of the individual maximum voluntary strength. Improving the rate of force development requires training at a higher intensity (above 85%), in the elderly just as in younger persons. It is now recommended that healthy old people should train 3 or 4 times weekly for the best results; persons with poor performance at the outset can achieve improvement even with less frequent training. Side effects are rare. Conclusion: Progressive strength training in the elderly is efficient, even with higher intensities, to reduce sarcopenia, and to retain motor function. Y1 - 2011 U6 - https://doi.org/10.3238/arztebl.2011.0359 SN - 1866-0452 VL - 108 IS - 21 SP - 359 EP - U30 PB - Dt. Ärzte-Verl. CY - Cologne ER - TY - CHAP A1 - Wochatz, Monique A1 - Kopinski, Stephan A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Flexion-extension ratio of trunk peak torque measures and antagonistic activity in males and females T2 - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine Y1 - 2014 SN - 0195-9131 SN - 1530-0315 VL - 46 IS - 5 SP - 148 EP - 148 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Wochatz, Monique A1 - Rabe, Sophie A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Scapular kinematics during unloaded and maximal loaded isokinetic concentric and eccentric shoulder flexion and extension movements JF - Journal of electromyography & kinesiology : official journal of the International Society of Electrophysiology and Kinesiology N2 - Characterization of scapular kinematics under demanding load conditions might aid to distinguish between physiological and clinically relevant alterations. Previous investigations focused only on submaximal external load situations. How scapular movement changes with maximal load remains unclear. Therefore, the present study aimed to evaluate 3D scapular kinematics during unloaded and maximal loaded shoulder flexion and extension. Twelve asymptomatic individuals performed shoulder flexion and extension movements under unloaded and maximal concentric and eccentric loaded isokinetic conditions. 3D scapular kinematics assessed with a motion capture system was analyzed for 20° intervals of humeral positions from 20° to 120° flexion. Repeated measures ANOVAs were used to evaluate kinematic differences between load conditions for scapular position angles, scapulohumeral rhythm and scapular motion extent. Increased scapular upward rotation was seen during shoulder flexion and extension as well as decreased posterior tilt and external rotation during eccentric and concentric arm descents of maximal loaded compared to unloaded conditions. Load effects were further seen for the scapulohumeral rhythm with greater scapular involvement at lower humeral positions and increased scapular motion extent under maximal loaded shoulder movements. With maximal load applied to the arm physiological scapular movement pattern are induced that may imply both impingement sparing and causing mechanisms. KW - Isokinetics KW - Motion analysis KW - Scapular dyskinesis KW - Scapulohumeral rhythm KW - Scapulothoracic Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2021.102517 SN - 1050-6411 SN - 1873-5711 VL - 57 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Baur, Heiner A1 - Müller, Steffen A1 - Hirschmüller, Anja A1 - Cassel, Michael A1 - Weber, Josefine A1 - Mayer, Frank T1 - Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals JF - Journal of electromyography and kinesiology N2 - Neuromuscular control in functional situations and possible impairments due to Achilles tendinopathy are not well understood. Thirty controls (CO) and 30 runners with Achilles tendinopathy (AT) were tested on a treadmill at 3.33 m s(-1) (12 km h(-1)). Neuromuscular activity of the lower leg (tibialis anterior, peroneal, and gastrocnemius muscle) was measured by surface electromyography. Mean amplitude values (MAV) for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. MAVs of the tibialis anterior did not differ between CO and AT in any gait cycle phase. The activation of the peroneal muscle was lower in AT in weight acceptance (p = 0.006), whereas no difference between CO and AT was found in preactivation (p = 0.71) and push-off (p = 0.83). Also, MAVs of the gastrocnemius muscle did not differ between AT and CO in preactivity (p = 0.71) but were reduced in AT during weight acceptance (p = 0.001) and push-off (p = 0.04). Achilles tendinopathy does not seem to alter pre-programmed neural control but might induce mechanical deficits of the lower extremity during weight bearing (joint stability). This should be addressed in the therapy process of AT. KW - Ankle joint KW - Electromyography KW - Overuse injury KW - Running gait Y1 - 2011 U6 - https://doi.org/10.1016/j.jelekin.2010.11.010 SN - 1050-6411 VL - 21 IS - 3 SP - 499 EP - 505 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - König, Niklas A1 - Reschke, Antje A1 - Wolter, Martin A1 - Müller, Steffen A1 - Mayer, Frank A1 - Baur, Heiner T1 - Plantar pressure trigger for reliable nerve stimulus application during dynamic H-reflex measurements JF - Gait & posture N2 - In dynamic H-reflex measurements, the standardisation of the nerve stimulation to the gait cycle is crucial to avoid misinterpretation due to altered pre-synaptic inhibition. In this pilot study, a plantar pressure sole was used to trigger the stimulation of the tibialis nerve with respect to the gait cycle. Consequently, the intersession reliability of the soleus muscle H-reflex during treadmill walking was investigated. Seven young participants performed walking trials on a treadmill at 5 km/h. The stimulating electrode was placed on the tibial nerve in the popliteal fossa. An EMG was recorded from the soleus muscle. To synchronize the stimulus to the gait cycle, initial heel strike was detected with a plantar pressure sole. Maximum H-reflex amplitude and M-wave amplitude were obtained and the Hmax/Mmax ratio was calculated. Data reveals excellent reliability, ICC = 0.89. Test-retest variability was 13.0% (+/- 11.8). The Bland-Altman analysis showed a systematic error of 2.4%. The plantar pressure sole was capable of triggering the stimulation of the tibialis nerve in a reliable way and offers a simple technique for the evaluation of reflex activity during walking. KW - Monosynaptic reflexes KW - Reflex reproducibility KW - Treadmill walking Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2012.09.021 SN - 0966-6362 VL - 37 IS - 4 SP - 637 EP - 639 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Müller, Steffen A1 - Baur, Heiner A1 - Hirschmueller, Anja A1 - Mayer, Frank T1 - Validität des COP-Verlaufes zur Quantifizierung der funktionalen Gangentwicklung bei Kindern N2 - Functional gait development in children is discussed controversially. Differentiated information about the roll- over process of the foot, represented by the "Center of Pressure" (COP), are still missing. The purpose of the study was the validation of the COP-path to quantify the functional gait development of children. Plantar pressure distribution was measured barefoot with an individual speed on a walkway (tartan) - in 255 children aged between 2 and 15 years. The medial and lateral area enclosed between the COP-path and the bisection of plantar angle (A(med), A(lat), Sigma: A(ml)) was calculated from plantar pressure data. Furthermore, the duration of the COP-path in the heel (COPtimeF), midfoot (COPtimeM) and forefoot (COPtimeV) was analysed. The load distribution under the medial and lateral forefoot was also calculated. The variation coefficient (VC) was calculated as a measure of interindividual variability. The medio-lateral divergency of the COP (Aml) initially decreases with advancing age (-20.2%), followed by a continuous increase (+27.2%). No changes in VC (A(med), A(lat), and A(ml)) appeared during age-related development. COPtimeM remains constant in all children over time. In contrast to COPtimeM, Cop(time)F decreases from youngest to oldest children (-31.0%), and COPtimeV increases (+41.7%). After initial descent up to 8 years of age, VC (COPtimeF, COPtimeM, COPtimeV) remains constant. The mediolateral load under the forefoot did not change. The COP-Path is able to characterise the functional gait development of children. VC values indicate high individual variability of gait pattern. In this context, age-based standard values should be critically discussed Y1 - 2006 ER - TY - INPR A1 - Baur, Heiner A1 - Hoffmann, Jan A1 - Reichmuth, Anne A1 - Müller, Steffen A1 - Mayer, Frank T1 - Influence of carbon fiber foot orthoses on plantar pressure distribution in cycling T2 - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Several equipment interventions like optimizing seat position or optimizing shoe/insole/pedal interface are suggested to reduce overuse injury in cycling. Data analyzing clinical or biomechanical effects of those interventions is sparse. Foot orthoses out of carbon fiber are one possibility to alter the interface between foot and pedal. The aim of this study was therefore to analyze plantar pressure distribution in carbon fiber foot orthoses in comparison to standard insoles of commercially available cycling shoes. Materials and Methods: 11 pain-free triathletes (Age: 29 +/- 9, 1.77 +/- 0.04 m, 68 5 kg) were tested on a cycle ergometer at 60 and 90 rotations per minute (rpm) at workloads of 200 and 300 Watts. Subjects wore in randomized order a cycling shoe with its standard insole (control condition CO) or the shoe with carbon fiber foot orthoses (Condition CA). Mean peak pressure out of 30 movement cycles were extracted for the total foot and specific foot regions (rear, mid, fore foot (medial, central, lateral) and toe region). Three-factor ANOVAs (factor foot orthoses, rpm, workload) for repeated measures (alpha = 0.05) were used to analyze the main question of a foot orthoses effect on peak in-shoe plantar pressure. Results: Peak pressures in the total foot were in a range of 70-75 kPa for 200 Watts (W) (300 W: 85-110 kPa). The carbon fiber foot orthoses reduced peak pressures by -4,1% compared to the standard insole (p = 0,10). In the foot regions rear(-16,6%, p<0.001), mid (-20,0%, p<0.001) and fore foot (-5.9%, p < 0.03)CA reduced peak pressure compared to CO. In the toe region, peak pressure was higher in CA (+16,2%) compared to CO (p<0,001). The lateral fore foot showed higher peak pressures in CA (+34%) and CO (+59%) compared to medial and central fore foot. Conclusion: Carbon fiber can serve as a suitable material for foot orthoses manufacturing in cycling. Plantar pressures do not increase due to the stiffness of the carbon. Individual customization may have the potential to reduce peak pressure in certain foot areas. KW - Carbon KW - Cycling KW - Foot orthoses KW - In-shoe measurement KW - Plantar Pressure Distribution Y1 - 2012 SN - 0932-0555 VL - 26 IS - 1 SP - 12 EP - 17 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Intziegianni, Konstantina A1 - Cassel, Michael A1 - König, Niklas A1 - Müller, Steffen A1 - Fröhlich, Katja A1 - Mayer, Frank T1 - Ultrasonography for the assessment of the structural properties of the Achilles tendon in asymptomatic individuals: An intra-rater reproducibility study JF - Isokinetics and exercise science : official journal of the European Isokinetic Society N2 - BACKGROUND: Reproducible measurements of tendon structural properties are a prerequisite for accurate diagnosis of tendon disorders and for determination of their mechanical properties. Despite the widely used application of Ultrasonography (US) in musculoskeletal assessment, its operator dependency and lack of standardization influences the consistency of the measurement. OBJECTIVE: To evaluate the intra-rater reproducibility of a standardized US method assessing the structural properties of the Achilles tendon (AT). METHODS: Sixteen asymptomatic participants were positioned prone on an isokinetic dynamometer with the knee extended and ankle at 90. flexion. US was used to assess AT-length, cross-sectional area (CSA), and AT-elongation during isometric plantarflexion contraction. The intra-rater reproducibility was assessed by ICC (2.1), Test-Retest Variability (TRV, %), Bland-Altman analyses (Bias +/- LoA [1.96*SD]), and Standard-Error of Measurement (SEM). RESULTS: Measurements of AT-length demonstrated an ICC of 0.93, TRV of 4.5 +/- 3.9%, Bias +/- LoA of -2.8 +/- 25.0 mm and SEM of 6.6 mm. AT-CSA showed an ICC of 0.79, TRV of 8.7 +/- 9.6%, Bias +/- LoA of 1.7 +/- 19.4 mm(2) and SEM of 5.3 mm(2). AT-elongation revealed an ICC of 0.92, TRV of 12.9 +/- 8.9%, Bias +/- LoA of 0.3 +/- 5.7 mm and SEM of 1.5 mm. CONCLUSIONS: The presented methodology allows a reproducible assessment of Achilles tendon structural properties when performed by a single rater. KW - Ultrasonography KW - Achilles tendon KW - reproducibility KW - isokinetic Y1 - 2015 U6 - https://doi.org/10.3233/IES-150586 SN - 0959-3020 SN - 1878-5913 VL - 23 IS - 4 SP - 263 EP - 270 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Eichler, Sarah A1 - Rabe, Sophie A1 - Salzwedel, Annett A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Tilgner, Nina A1 - John, Michael A1 - Wegschneider, Karl A1 - Mayer, Frank A1 - Völler, Heinz T1 - Effectiveness of an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement BT - Study protocol for a multicenter, superiority, no-blinded randomized controlled trial JF - Trials N2 - Background Total hip or knee replacement is one of the most frequently performed surgical procedures. Physical rehabilitation following total hip or knee replacement is an essential part of the therapy to improve functional outcomes and quality of life. After discharge from inpatient rehabilitation, a subsequent postoperative exercise therapy is needed to maintain functional mobility. Telerehabilitation may be a potential innovative treatment approach. We aim to investigate the superiority of an interactive telerehabilitation intervention for patients after total hip or knee replacement, in comparison to usual care, regarding physical performance, functional mobility, quality of life and pain. Methods/design This is an open, randomized controlled, multicenter superiority study with two prospective arms. One hundred and ten eligible and consenting participants with total knee or hip replacement will be recruited at admission to subsequent inpatient rehabilitation. After comprehensive, 3-week, inpatient rehabilitation, the intervention group performs a 3-month, interactive, home-based exercise training with a telerehabilitation system. For this purpose, the physiotherapist creates an individual training plan out of 38 different strength and balance exercises which were implemented in the system. Data about the quality and frequency of training are transmitted to the physiotherapist for further adjustment. Communication between patient and physiotherapist is possible with the system. The control group receives voluntary, usual aftercare programs. Baseline assessments are investigated after discharge from rehabilitation; final assessments 3 months later. The primary outcome is the difference in improvement between intervention and control group in 6-minute walk distance after 3 months. Secondary outcomes include differences in the Timed Up and Go Test, the Five-Times-Sit-to-Stand Test, the Stair Ascend Test, the Short-Form 36, the Western Ontario and McMaster Universities Osteoarthritis Index, the International Physical Activity Questionnaire, and postural control as well as gait and kinematic parameters of the lower limbs. Baseline-adjusted analysis of covariance models will be used to test for group differences in the primary and secondary endpoints. Discussion We expect the intervention group to benefit from the interactive, home-based exercise training in many respects represented by the study endpoints. If successful, this approach could be used to enhance the access to aftercare programs, especially in structurally weak areas. KW - Telerehabilitation KW - Home-based KW - Total hip replacement KW - Total knee replacement KW - Exercise therapy KW - Aftercare Y1 - 2017 U6 - https://doi.org/10.1186/s13063-017-2173-3 SN - 1745-6215 VL - 18 SP - 1 EP - 7 PB - BioMed Central CY - London ER - TY - JOUR A1 - Appiah-Dwomoh, Edem Korkor A1 - Müller, Steffen A1 - Mayer, Frank T1 - Reproducibility of Static and Dynamic Postural Control Measurement in Adolescent Athletes with Back Pain JF - Rehabilitation Research and Practice N2 - Static (one-legged stance) and dynamic (star excursion balance) postural control tests were performed by 14 adolescent athletes with and 17 without back pain to determine reproducibility. The total displacement, mediolateral and anterior-posterior displacements of the centre of pressure in mm for the static, and the normalized and composite reach distances for the dynamic tests were analysed. Intraclass correlation coefficients, 95% confidence intervals, and a Bland-Altman analysis were calculated for reproducibility. Intraclass correlation coefficients for subjects with (0.54 to 0.65), (0.61 to 0.69) and without (0.45 to 0.49), (0.52 to 0.60) back pain were obtained on the static test for right and left legs, respectively. Likewise, (0.79 to 0.88), (0.75 to 0.93) for subjects with and (0.61 to 0.82), (0.60 to 0.85) for those without back pain were obtained on the dynamic test for the right and left legs, respectively. Systematic bias was not observed between test and retest of subjects on both static and dynamic tests. The one-legged stance and star excursion balance tests have fair to excellent reliabilities on measures of postural control in adolescent athletes with and without back pain. They can be used as measures of postural control in adolescent athletes with and without back pain. KW - Excursion Balance Test KW - Female Collegiate Soccer KW - Test-Retest Reliability KW - Lower-Extremity Injury KW - Lumbar Spine KW - Performance KW - Basketball KW - Children KW - Prevalence KW - Stability Y1 - 2018 U6 - https://doi.org/10.1155/2018/8438350 SN - 2090-2875 SN - 2090-2867 VL - 2018 SP - 1 EP - 8 PB - Hindawi CY - New York ER - TY - JOUR A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular activity of the peroneal muscle after foot orthoses therapy in runners JF - Medicine and science in sports and exercise : official journal of the American College of Sports Medicine N2 - BAUR, H., A. HIRSCHMULLER, S. MULLER, and F. MAYER. Neuromuscular Activity of the Peroneal Muscle after Foot Orthoses Therapy in Runners. Med. Sci. Sports Exerc., Vol. 43, No. 8, pp. 1500-1506, 2011. Purpose: Foot orthoses are a standard option to treat overuse injury. Biomechanical data providing mechanisms of foot orthoses' effectiveness are sparse. Stability of the ankle joint complex might be a key factor. The purpose was therefore to analyze neuromuscular activity of the musculus peroneus longus in runners with overuse injury symptoms treated with foot orthoses. Methods: A total of 99 male and female runners with overuse injury symptoms randomized in a control group (CO) and an orthoses group (OR) were analyzed on a treadmill at 3.3 m.s(-1) before and after an 8-wk foot orthoses intervention. Muscular activity of the musculus peroneus longus was measured and quantified in the time domain (initial onset of activation (T-ini), time of maximal activity (T-max), total time of activation (T-tot)) and amplitude domain (amplitude in preactivation (A(pre)), weight acceptance (A(wa)), push-off (A(po))). Results: Peroneal activity in the time domain did not differ initially between CO and OR, and no effect was observed after therapy (T-ini: CO = -0.88 +/- 0.09, OR = -0.88 +/- 0.08 / T-max: CO = 0.14 +/- 0.06, OR = 0.15 +/- 0.06 / T-tot: CO = 0.40 +/- 0.09, OR = 0.41 +/- 0.09; P > 0.05). In preactivation (Apre), muscle activity was higher in OR after intervention (CO = 0.97 +/- 0.32, 95% confidence interval = 0.90-1.05; OR = 1.18 +/- 0.43, 95% confidence interval = 1.08-1.28; P = 0.003). There was no group or intervention effect during stance (A(wa): CO = 2.33 +/- 0.66, OR = 2.33 +/- 0.74 / A(po): CO = 0.80 +/- 0.41, OR = 0.88 +/- 0.40; P > 0.05). Conclusions: Enhanced muscle activation of the musculus peroneus longus in preactivation suggests an altered preprogrammed activity, which might lead to better ankle stability providing a possible mode of action for foot orthoses therapy. KW - ANKLE JOINT KW - EMG KW - INSERT KW - INSOLE KW - JOINT STABILITY KW - OVERUSE INJURY Y1 - 2011 U6 - https://doi.org/10.1249/MSS.0b013e31820c64ae SN - 0195-9131 VL - 43 IS - 8 SP - 1500 EP - 1506 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Cassel, Michael A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Baur, Heiner A1 - Jerusel, N. A1 - Mayer, Frank T1 - Intra- and interrater variability of sonographic investigations of patella and achilles tendons JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Clinical examinations of tendon disorders routinely include ultrasound examinations, despite the fact that availability of data concerning validity criteria of these measurements are limited. The present study therefore aims to evaluate the reliability of measurements of Achilles- and Patella tendon diameter and in the detection of structural adaptations. Materials and Methods: In 14 healthy, recreationally active subjects both asymptomatic Achilles (AT) and patella tendons (PT) were measured twice by two examiners in a test-retest design. Besides the detection of anteroposterior (a.p.-) and mediolateral (m.l.-) diameters, areas of hypoechogenicity and neovascularisation were registered. Data were analysed descriptively with calculation of test-retest variability (TRV), intraclass-correlation coefficient (ICC) and Bland and Altman's plots with bias and 95% limits of agreement (LOA). Results: Intra- and interrater differences of AT- and PT-a.p.-diameter varied from 0.2 - 1.2 mm, those of AT- and PT-m.l-diameter from 0.7-5.1 mm. Areas of hypoechogenicity were visible in 24% of the tendons, while 15% showed neovascularisations. Intrarater AT-a.p.-diameters showed sparse deviations (TRV 4.5-7.4%; ICC 0.60-0.84; bias -0.05-0.07 mm; LOA-0.6-0.5 to -1.1 - 1.0 mm), while interrater AT- and PT-m.l.-diameters were highly variable (TRV 13.7-19.7%; ICC 0.11-0.20; bias -1.4-4.3 mm; LOA-5.5-2.7 to -10.5 - 1.9 mm). Conclusion: Our results suggest that the measurement of AT- and PT-a.p.-diameters is a reliable parameter. In contrast, reproducibility of AT- and PT-m.l.-diameters is questionable. The study corroborates the presence of hypoechogenicity and neovascularisation in asymptomatic tendons. KW - ultrasound KW - Achilles tendon KW - Patella tendon KW - intra- and inter-rater variability KW - tendon diameter Y1 - 2012 U6 - https://doi.org/10.1055/s-0031-1281839 SN - 0932-0555 VL - 26 IS - 1 SP - 21 EP - 26 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Müller, Steffen A1 - Mayer, Patrizia A1 - Baur, Heiner A1 - Mayer, Frank T1 - Higher velocities in isokinetic dynamometry a pilot study of new test mode with active compensation of inertia JF - Isokinetics and exercise science : official journal of the European Isokinetic Society N2 - Isokinetic dynamometry is a standard technique for strength testing and training. Nevertheless reliability and validity is limited due to inertia effects, especially for high velocities. Therefore in a first methodological approach the purpose was to evaluate a new isokinetic measurement mode including inertia compensation compared to a classic isokinetic measurement mode for single and multijoint movements at different velocities. Isokinetic maximum strength measurements were carried out in 26 healthy active subjects. Tests were performed using classic isokinetic and new isokinetic mode in random order. Maximum torque/force, maximum movement velocity and time for acceleration were calculated. For inter-instrument agreement Bland and Altman analysis, systematic and random error was quantified. Differences between both methods were assessed (ANOVA alpha = 0.05). Bland and Altman analysis showed the highest agreement between the two modes for strength and velocity measurements (bias: < +/- 1.1%; LOA: < 14.2%) in knee flexion/extension at slow isokinetic velocity (60 degrees/s). Least agreement (range: bias: -67.6% +/- 119.0%; LOA: 53.4% 69.3%) was observed for shoulder/arm test at high isokinetic velocity (360 degrees/s). The Isokin(new) mode showed higher maximum movement velocities (p < 0.05). For low isokinetic velocities the new mode agrees with the classic mode. Especially at high isokinetic velocities the new isokinetic mode shows relevant benefits coupled with a possible trade-off with the force/torque measurement. In conclusion, this study offers for the first time a comparison between the 'classical' and inertia-compensated isokinetic dynamometers indicating the advantages and disadvantages associated with each individual approach, particularly as they relate to medium or high velocities in testing and training. KW - Strength testing KW - concentric KW - validity KW - trunk KW - knee KW - shoulder Y1 - 2011 U6 - https://doi.org/10.3233/IES-2011-0398 SN - 0959-3020 VL - 19 IS - 2 SP - 63 EP - 70 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Hirschmüller, Anja A1 - Baur, Heiner A1 - Müller, Steffen A1 - Helwig, Peter A1 - Dickhuth, Hans-Hermann A1 - Mayer, Frank T1 - Clinical effectiveness of customised sport shoe orthoses for overuse injuries in runners a randomised controlled study JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Background and objectives Treatment of chronic running-related overuse injuries by orthopaedic shoe orthoses is very common but not evidence-based to date. Hypothesis Polyurethane foam orthoses adapted to a participant's barefoot plantar pressure distribution are an effective treatment option for chronic overuse injuries in runners. Design Prospective, randomised, controlled clinical trial. Intervention 51 patients with running injuries were treated with custom-made, semirigid running shoe orthoses for 8 weeks. 48 served as a randomised control group that continued regular training activity without any treatment. Main outcome measures Evaluation was made by the validated pain questionnaire Subjective Pain Experience Scale, the pain disability index and a comfort index in the orthoses group (ICI). Results There were statistically significant differences between the orthoses and control groups at 8 weeks for the pain disability index (mean difference 3.2; 95% CI 0.9 to 5.5) and the Subjective Pain Experience Scale (6.6; 2.6 to 10.6). The patients with orthoses reported a rising wearing comfort (pre-treatment ICI 69/100; post-treatment ICI 83/100) that was most pronounced in the first 4 weeks (ICI 80.4/100). Conclusion Customised polyurethane running shoe orthoses are an effective conservative therapy strategy for chronic running injuries with high comfort and acceptance of injured runners. Y1 - 2011 U6 - https://doi.org/10.1136/bjsm.2008.055830 SN - 0306-3674 VL - 45 IS - 12 SP - 959 EP - 965 PB - BMJ Publ. Group CY - London ER - TY - JOUR A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Cassel, Michael A1 - Mayer, Frank T1 - Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain JF - Frontiers in physiology N2 - In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 ± 1.3 y; 176 ± 11 cm; 68 ± 11 kg; 12.4 ± 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 ± 1.3 y; 174 ± 7 cm; 67 ± 8 kg; 14.9 ± 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [%]) for all 12 single muscles were normalized to MIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3–1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment. KW - SEMG-pattern KW - back pain KW - pre-activity KW - drop jump KW - neuromuscular KW - trunk KW - performance KW - young athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00274 SN - 1664-042X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Cassel, Michael A1 - Intziegianni, Konstantina A1 - Risch, Lucie A1 - Müller, Steffen A1 - Engel, Tilman A1 - Mayer, Frank T1 - Physiological Tendon Thickness Adaptation in Adolescent Elite Athletes BT - A Longitudinal Study JF - Frontiers in physiology N2 - Increased Achilles (AT) and Patellar tendon (PT) thickness in adolescent athletes compared to non-athletes could be shown. However, it is unclear, if changes are of pathological or physiological origin due to training. The aim of this study was to determine physiological AT and PT thickness adaptation in adolescent elite athletes compared to non-athletes, considering sex and sport. In a longitudinal study design with two measurement days (M1/M2) within an interval of 3.2 ± 0.8 years, 131 healthy adolescent elite athletes (m/f: 90/41) out of 13 different sports and 24 recreationally active controls (m/f: 6/18) were included. Both ATs and PTs were measured at standardized reference points. Athletes were divided into 4 sport categories [ball (B), combat (C), endurance (E) and explosive strength sports (S)]. Descriptive analysis (mean ± SD) and statistical testing for group differences was performed (α = 0.05). AT thickness did not differ significantly between measurement days, neither in athletes (5.6 ± 0.7 mm/5.6 ± 0.7 mm) nor in controls (4.8 ± 0.4 mm/4.9 ± 0.5 mm, p > 0.05). For PTs, athletes presented increased thickness at M2 (M1: 3.5 ± 0.5 mm, M2: 3.8 ± 0.5 mm, p < 0.001). In general, males had thicker ATs and PTs than females (p < 0.05). Considering sex and sports, only male athletes from B, C, and S showed significant higher PT-thickness at M2 compared to controls (p ≤ 0.01). Sport-specific adaptation regarding tendon thickness in adolescent elite athletes can be detected in PTs among male athletes participating in certain sports with high repetitive jumping and strength components. Sonographic microstructural analysis might provide an enhanced insight into tendon material properties enabling the differentiation of sex and influence of different sports. KW - Achilles and patellar tendon KW - training adaptation KW - sonography KW - young athletes KW - non-athletes Y1 - 2017 U6 - https://doi.org/10.3389/fphys.2017.00795 SN - 1664-042X VL - 8 SP - 1 EP - 8 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Appiah-Dwomoh, Edem Korkor A1 - Müller, Steffen A1 - Mayer, Frank T1 - Is there an association between variables of static and dynamic postural control in adolescent athletes with back pain? T1 - Gibt es einen Zusammenhang zwischen Variablen der statischen und dynamischen posturalen Kontrolle bei Nachwuchsathleten mit Rückenschmerzen? JF - German Journal of Exercise and Sport Research N2 - An association between static and dynamic postural control exists in adults with back pain. We aimed to determine whether this association also exists in adolescent athletes with the same condition. In all, 128 athletes with and without back pain performed three measurements of 15s of static (one-legged stance) and dynamic (star excursion balance test) postural control tests. All subjects and amatched subgroup of athletes with and without back pain were analyzed. The smallest center of pressure mediolateral and anterior-posterior displacements (mm) and normalized highest reach distance were the outcome measures. No association was found between variables of the static and dynamic tests for all subjects and the matched group with and without back pain. The control of static and dynamic posture in adolescent athletes with and without back pain might not be related. N2 - Bei Erwachsenen mit Rückenschmerzen besteht ein Zusammenhang zwischen statischer und dynamischer posturaler Kontrolle. Ziel der Studie war es zu untersuchen, ob dieser Zusammenhang auch bei Nachwuchsathleten mit Rückenschmerzen nachweisbar ist. Insgesamt 128 Nachwuchsathleten mit oder ohne Rückenschmerzen führten je 3 Messungen à 15 s eines statischen (einbeiniger Standtest) bzw. dynamischen („star excursion balance test“ [SEBT]) posturalen Kontrolltests durch. In die Auswertung wurden sowohl die gesamte Stichprobe als auch eine gematchte Untergruppe einbezogen. Zielparameter waren der kleinste mediolaterale und anterior-posteriore Schwankungsweg im Einbeinstand (mm) und die normierte maximal erreichte Distanz im SEBT. Es wurden keine Zusammenhänge zwischen Variablen der statischen und dynamischen Tests für alle Studienteilnehmer und der gematchten Untergruppe mit und ohne Rückenschmerzen festgestellt. Obwohl ein Zusammenhang zwischen statischer und dynamischer posturaler Kontrolle angenommen wird, konnte dieser bei Nachwuchsathleten mit oder ohne Rückenschmerzen nicht nachgewiesen werden. KW - Postural control KW - Adolescent athletes KW - Back pain KW - One-legged stance KW - Star excursion balance test KW - Posturale Kontrolle KW - Nachwuchsathleten KW - Rückenschmerzen KW - Einbeiniger Standtest Y1 - 2019 U6 - https://doi.org/10.1007/s12662-019-00573-6 SN - 2509-3142 SN - 2509-3150 VL - 49 IS - 2 SP - 150 EP - 155 PB - Springer CY - New York ER - TY - JOUR A1 - Wochatz, Monique A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Alterations in scapular kinematics and scapular muscle activity after fatiguing shoulder flexion and extension movements JF - Medicine and science in sports and exercise : MSSE N2 - Repetitive overhead motions in combination with heavy loading were identified as risk factors for the development of shoulder pain. However, the underlying mechanism is not fully understood. Altered scapular kinematics as a result of muscle fatigue is suspected to be a contributor. PURPOSE: To determine scapular kinematics and scapular muscle activity at the beginning and end of constant shoulder flexion and extension loading in asymptomatic individuals. METHODS: Eleven asymptomatic adults (28±4yrs; 1.74±0.13m; 74±16kg) underwent maximum isokinetic loading of shoulder flexion (FLX) and extension (EXT) in the sagittal plane (ROM: 20- 180°; concentric mode; 180°/s) until individual peak torque was reduced by 50%. Simultaneously 3D scapular kinematics were assessed with a motion capture system and scapular muscle activity with a 3-lead sEMG of upper and lower trapezius (UT, LT) and serratus anterior (SA). Scapular position angles were calculated for every 20° increment between 20-120° humerothoracic positions. Muscle activity was quantified by amplitudes (RMS) of the total ROM. Descriptive analyses (mean±SD) of kinematics and muscle activity at begin (taskB) and end (taskE) of the loading task was followed by ANOVA and paired t-tests. RESULTS: At taskB activity ranged from 589±343mV to 605±250mV during FLX and from 105±41mV to 164±73mV during EXT across muscles. At taskE activity ranged from 594±304mV to 875±276mV during FLX and from 97±33mV to 147±57mV during EXT. Differences with increased muscle activity were seen for LT and UT during FLX (meandiff= 141±113mV for LT, p<0.01; 191±153mV for UT, p<0.01). Scapula position angles continuously increased in upward rotation, posterior tilt and external rotation during FLX and reversed during EXT both at taskB and taskE. At taskE scapula showed greater external rotation (meandiff= 3.6±3.7°, p<0.05) during FLX and decreased upward rotation (meandiff= 1.9±2.3°, p<0.05) and posterior tilt (meandiff= 1.0±2.1°, p<0.05) during EXT across humeral positions. CONCLUSIONS: Force reduction in consequence of fatiguing shoulder loading results in increased scapular muscle activity and minor alterations in scapula motion. Whether even small changes have a clinical impact by creating unfavorable subacromial conditions potentially initiating pain remains unclear. Y1 - 2020 U6 - https://doi.org/10.1249/01.mss.0000676540.02017.2c SN - 0195-9131 SN - 1530-0315 VL - 52 IS - 17 SP - 274 EP - 274 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - GEN A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Jahn, Michael A1 - Müller, Steffen A1 - Mayer, Frank T1 - Therapeutic efficiency and biomechanical effects of sport insoles in female runners T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 624 KW - polyurethane foam KW - overuse injury KW - biomechanical effect KW - female runner KW - injury symptom Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435525 SN - 1866-8364 IS - 624 ER - TY - JOUR A1 - Baur, Heiner A1 - Müller, Steffen A1 - Hirschmüller, Anja A1 - Huber, Georg A1 - Mayer, Frank T1 - Reactivity, stability, and strength performance capacity in motor sports JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Background: Racing drivers require multifaceted cognitive and physical abilities in a multitasking situation. A knowledge of their physical capacities may help to improve fitness and performance. Objective: To compare reaction time, stability performance capacity, and strength performance capacity of elite racing drivers with those of age-matched, physically active controls. Methods: Eight elite racing drivers and 10 physically active controls matched for age and weight were tested in a reaction and determination test requiring upper and lower extremity responses to visual and audio cues. Further tests comprised evaluation of one-leg postural stability on a two-dimensional moveable platform, measures of maximum strength performance capacity of the extensors of the leg on a leg press, and a test of force capacity of the arms in a sitting position at a steering wheel. An additional arm endurance test consisted of isometric work at the steering wheel at + 30 degrees and -30 degrees where an eccentric threshold load of 30 N.m was applied. Subjects had to hold the end positions above this threshold until exhaustion. Univariate one way analysis of variance (alpha = 0.05) including a Bonferroni adjustment was used to detect group differences between the drivers and controls. Results: The reaction time of the racing drivers was significantly faster than the controls ( p = 0.004). The following motor reaction time and reaction times in the multiple determination test did not differ between the groups. No significant differences (p> 0.05) were found for postural stability, leg extensor strength, or arm strength and endurance. Conclusions: Racing drivers have faster reaction times than age-matched physically active controls. Further development of motor sport-specific test protocols is suggested. According to the requirements of motor racing, strength and sensorimotor performance capacity can potentially be improved. Y1 - 2006 U6 - https://doi.org/10.1136/bjsm.2006.025783 SN - 0306-3674 VL - 40 SP - 906 EP - 910 PB - BMJ Publ. Group CY - London ER - TY - JOUR A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Sensorimotor exercises and enhanced trunk function BT - a randomized controlled trial JF - International journal of sports medicine N2 - The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes. Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24Nm 95%CI +/- 19Nm; Rotation: + 19Nm 95%CI +/- 13Nm) and RT (Extension: +35Nm 95%CI +/- 16Nm; Rotation: +5Nm 95%CI +/- 4Nm) compared to CG (Extension: -4Nm 95%CI +/- 16Nm; Rotation: -2Nm 95%CI +/- 4Nm) was present (p<0.05). KW - core KW - training intervention KW - prevention KW - perturbation KW - MiSpEx* Y1 - 2018 U6 - https://doi.org/10.1055/a-0592-7286 SN - 0172-4622 SN - 1439-3964 VL - 39 IS - 7 SP - 555 EP - 563 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mayer, Frank A1 - Bonaventura, Klaus A1 - Cassel, Michael A1 - Müller, Steffen A1 - Weber, Josefine A1 - Scharhag-Rosenberger, Friederike A1 - Carlsohn, Anja A1 - Baur, Heiner A1 - Scharhag, Jürgen T1 - Medical results of preparticipation examination in adolescent athletes JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Background Preparticipation examinations (PPE) are frequently used to evaluate eligibility for competitive sports in adolescent athletes. Nevertheless, the effectiveness of these examinations is under debate since costs are high and its validity is discussed controversial. Purpose To analyse medical findings and consequences in adolescent athletes prior to admission to a sports school. Methods In 733 adolescent athletes (318 girls, 415 boys, age 12.3+/-0.4, 16 sports disciplines), history and clinical examination (musculoskeletal, cardiovascular, general medicine) was performed to evaluate eligibility. PPE was completed by determination of blood parameters, ECG at rest and during ergometry, echocardiography and x-rays and ultrasonography if indicated. Eligibility was either approved or rated with restriction. Recommendations for therapy and/or prevention were given to the athletes and their parents. Results Historical (h) and clinical (c) findings (eg, pain, verified pathologies) were more frequent regarding the musculoskeletal system (h: 120, 16.4%; c: 247, 33.7%) compared to cardiovascular (h: 9, 1.2%; c: 23, 3.1%) or general medicine findings (h: 116, 15.8%; c: 71, 9.7%). ECG at rest was moderately abnormal in 46 (6.3%) and severely abnormal in 25 athletes (3.4%). Exercise ECG was suspicious in 25 athletes (3.4%). Relevant echocardiographic abnormalities were found in 17 athletes (2.3%). In 52 of 358 cases (14.5%), x-rays led to diagnosis (eg, Spondylolisthesis). Eligibility was temporarily restricted in 41 athletes (5.6%). Three athletes (0.4%) had to be excluded from competitive sports. Therapy (eg, physiotherapy, medication) and/or prevention (sensorimotor training, vaccination) recommendations were deduced due to musculoskeletal (t:n = 76,10.3%; p:n = 71,9.8%) and general medicine findings (t:n = 80, 10.9%; p:n = 104, 14.1%). Conclusion Eligibility for competitive sports is restricted in only 5.5% of adolescent athletes at age 12. Eligibility refusals are rare. However, recommendations for therapy and prevention are frequent, mainly regarding the musculoskeletal system. In spite of time and cost consumption, adolescent preparticipation before entering a career in high-performance sports is supported. Y1 - 2012 U6 - https://doi.org/10.1136/bjsports-2011-090966 SN - 0306-3674 VL - 46 IS - 7 SP - 524 EP - 530 PB - BMJ Publ. Group CY - London ER - TY - JOUR A1 - Baur, Heiner A1 - Hirschmüller, Anja A1 - Müller, Steffen A1 - Cassel, Michael A1 - Mayer, Frank T1 - Is EMG of the lower leg dependent on weekly running mileage? JF - International journal of sports medicine N2 - Neuromuscular activity of the lower leg is dependent on the task performed, speed of movement and gender. Whether training volume influences neuromuscular activity is not known. The EMG of physically active persons differing in running mileage was analysed to investigate this. 55 volunteers were allocated to a low (LM: < 30 km), intermediate (IM: > 30 km & < 45 km) or high mileage (HM: > 45 km) group according to their weekly running volume. Neuromuscular activity of the lower leg was measured during running (3.33 m.s(-1)). Mean amplitude values for preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. Higher activity in the gastrocnemius group was observed in weight acceptance in LM compared to IM (+30%) and HM (+25%) but lower activity was present in the push-off for LM compared to IM and HM. For the peroneal muscle, differences were present in the push-off where HM showed increased activity compared to IM (+24%) and LM (+60%). The tibial muscle revealed slightly lower activity during preactivation for the high mileage runners. Neuromuscular activity differs during stance between the high and intermediate group compared to low mileage runners. Slight adaptations in neuromuscular activation indicate a more target-oriented activation strategy possibly due to repetitive training in runners with higher weekly mileage. KW - locomotion KW - neuromuscular control KW - running gait KW - training volume Y1 - 2012 U6 - https://doi.org/10.1055/s-0031-1286250 SN - 0172-4622 VL - 33 IS - 1 SP - 53 EP - 57 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mugele, Hendrik A1 - Plummer, Ashley A1 - Steffen, Kathrin A1 - Stoll, Josefine A1 - Mayer, Frank A1 - Müller, Juliane T1 - General versus sports-specific injury prevention programs in athletes BT - A systematic review on the effect on injury rates JF - PLOS ONE N2 - Introduction Annually, 2 million sports-related injuries are reported in Germany of which athletes contribute to a large proportion. Multiple sport injury prevention programs designed to decrease acute and overuse injuries in athletes have been proven effective. Yet, the programs’ components, general or sports-specific, that led to these positive effects are uncertain. Despite not knowing about the superiority of sports-specific injury prevention programs, coaches and athletes alike prefer more specialized rather than generalized exercise programs. Therefore, this systematic review aimed to present the available evidence on how general and sports-specific prevention programs affect injury rates in athletes. Methods PubMed and Web of Science were electronically searched throughout April 2018. The inclusion criteria were publication dates Jan 2006–Dec 2017, athletes (11–45 years), exercise-based injury prevention programs and injury incidence. The methodological quality was assessed with the Cochrane Collaboration assessment tools. Results Of the initial 6619 findings, 15 studies met the inclusion criteria. In addition, 13 studies were added from reference lists and external sources making a total of 28 studies. Of which, one used sports-specific, seven general and 20 mixed prevention strategies. Twenty-four studies revealed reduced injury rates. Of the four ineffective programs, one was general and three mixed. Conclusion The general and mixed programs positively affect injury rates. Sports-specific programs are uninvestigated and despite wide discussion regarding the definition, no consensus was reached. Defining such terminology and investigating the true effectiveness of such IPPs is a potential avenue for future research. KW - randomized-controlled-trial KW - cruciate ligament injury KW - amateur soccer players KW - hamstring injuries KW - training-program KW - exercise program KW - adolescent sport KW - youth football KW - team handball KW - risk-factors Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0205635 SN - 1932-6203 VL - 13 IS - 10 SP - 1 EP - 16 PB - Public Library of Science CY - San Francisco ER -