TY - JOUR A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew James A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass JF - BMC sports science, medicine and rehabilitation N2 - Background Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p <= 0.05; Bonferroni adjusted alpha = 0.008). Results PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water KW - pipe KW - rotator cuff Y1 - 2020 U6 - https://doi.org/10.1186/s13102-020-00168-x SN - 2052-1847 VL - 12 IS - 1 PB - BioMed Central CY - London ER - TY - GEN A1 - Baritello, Omar A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Kopinski, Stephan A1 - Quarmby, Andrew James A1 - Müller, Steffen A1 - Mayer, Frank T1 - Neuromuscular shoulder activity during exercises with different combinations of stable and unstable weight mass T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background Recent shoulder injury prevention programs have utilized resistance exercises combined with different forms of instability, with the goal of eliciting functional adaptations and thereby reducing the risk of injury. However, it is still unknown how an unstable weight mass (UWM) affects the muscular activity of the shoulder stabilizers. Aim of the study was to assess neuromuscular activity of dynamic shoulder stabilizers under four conditions of stable and UWM during three shoulder exercises. It was hypothesized that a combined condition of weight with UWM would elicit greater activation due to the increased stabilization demand. Methods Sixteen participants (7 m/9 f) were included in this cross-sectional study and prepared with an EMG-setup for the: Mm. upper/lower trapezius (U.TA/L.TA), lateral deltoid (DE), latissimus dorsi (LD), serratus anterior (SA) and pectoralis major (PE). A maximal voluntary isometric contraction test (MVIC; 5 s.) was performed on an isokinetic dynamometer. Next, internal/external rotation (In/Ex), abduction/adduction (Ab/Ad) and diagonal flexion/extension (F/E) exercises (5 reps.) were performed with four custom-made-pipes representing different exercise conditions. First, the empty-pipe (P; 0.5 kg) and then, randomly ordered, water-filled-pipe (PW; 1 kg), weight-pipe (PG; 4.5 kg) and weight + water-filled-pipe (PWG; 4.5 kg), while EMG was recorded. Raw root-mean-square values (RMS) were normalized to MVIC (%MVIC). Differences between conditions for RMS%MVIC, scapular stabilizer (SR: U.TA/L.TA; U.TA/SA) and contraction (CR: concentric/eccentric) ratios were analyzed (paired t-test; p <= 0.05; Bonferroni adjusted alpha = 0.008). Results PWG showed significantly greater muscle activity for all exercises and all muscles except for PE compared to P and PW. Condition PG elicited muscular activity comparable to PWG (p > 0.008) with significantly lower activation of L.TA and SA in the In/Ex rotation. The SR ratio was significantly higher in PWG compared to P and PW. No significant differences were found for the CR ratio in all exercises and for all muscles. Conclusion Higher weight generated greater muscle activation whereas an UWM raised the neuromuscular activity, increasing the stabilization demands. Especially in the In/Ex rotation, an UWM increased the RMS%MVIC and SR ratio. This might improve training effects in shoulder prevention and rehabilitation programs. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 867 KW - EMG KW - instability KW - overhead athlete KW - unstable resistance training KW - water pipe KW - rotator cuff Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509366 SN - 1866-8364 IS - 1 ER - TY - JOUR A1 - Wochatz, Monique A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Alterations in scapular kinematics and scapular muscle activity after fatiguing shoulder flexion and extension movements JF - Medicine and science in sports and exercise : MSSE N2 - Repetitive overhead motions in combination with heavy loading were identified as risk factors for the development of shoulder pain. However, the underlying mechanism is not fully understood. Altered scapular kinematics as a result of muscle fatigue is suspected to be a contributor. PURPOSE: To determine scapular kinematics and scapular muscle activity at the beginning and end of constant shoulder flexion and extension loading in asymptomatic individuals. METHODS: Eleven asymptomatic adults (28±4yrs; 1.74±0.13m; 74±16kg) underwent maximum isokinetic loading of shoulder flexion (FLX) and extension (EXT) in the sagittal plane (ROM: 20- 180°; concentric mode; 180°/s) until individual peak torque was reduced by 50%. Simultaneously 3D scapular kinematics were assessed with a motion capture system and scapular muscle activity with a 3-lead sEMG of upper and lower trapezius (UT, LT) and serratus anterior (SA). Scapular position angles were calculated for every 20° increment between 20-120° humerothoracic positions. Muscle activity was quantified by amplitudes (RMS) of the total ROM. Descriptive analyses (mean±SD) of kinematics and muscle activity at begin (taskB) and end (taskE) of the loading task was followed by ANOVA and paired t-tests. RESULTS: At taskB activity ranged from 589±343mV to 605±250mV during FLX and from 105±41mV to 164±73mV during EXT across muscles. At taskE activity ranged from 594±304mV to 875±276mV during FLX and from 97±33mV to 147±57mV during EXT. Differences with increased muscle activity were seen for LT and UT during FLX (meandiff= 141±113mV for LT, p<0.01; 191±153mV for UT, p<0.01). Scapula position angles continuously increased in upward rotation, posterior tilt and external rotation during FLX and reversed during EXT both at taskB and taskE. At taskE scapula showed greater external rotation (meandiff= 3.6±3.7°, p<0.05) during FLX and decreased upward rotation (meandiff= 1.9±2.3°, p<0.05) and posterior tilt (meandiff= 1.0±2.1°, p<0.05) during EXT across humeral positions. CONCLUSIONS: Force reduction in consequence of fatiguing shoulder loading results in increased scapular muscle activity and minor alterations in scapula motion. Whether even small changes have a clinical impact by creating unfavorable subacromial conditions potentially initiating pain remains unclear. Y1 - 2020 U6 - https://doi.org/10.1249/01.mss.0000676540.02017.2c SN - 0195-9131 SN - 1530-0315 VL - 52 IS - 17 SP - 274 EP - 274 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Wochatz, Monique A1 - Rabe, Sophie A1 - Engel, Tilman A1 - Müller, Steffen A1 - Mayer, Frank T1 - Scapular kinematics during unloaded and maximal loaded isokinetic concentric and eccentric shoulder flexion and extension movements JF - Journal of electromyography & kinesiology : official journal of the International Society of Electrophysiology and Kinesiology N2 - Characterization of scapular kinematics under demanding load conditions might aid to distinguish between physiological and clinically relevant alterations. Previous investigations focused only on submaximal external load situations. How scapular movement changes with maximal load remains unclear. Therefore, the present study aimed to evaluate 3D scapular kinematics during unloaded and maximal loaded shoulder flexion and extension. Twelve asymptomatic individuals performed shoulder flexion and extension movements under unloaded and maximal concentric and eccentric loaded isokinetic conditions. 3D scapular kinematics assessed with a motion capture system was analyzed for 20° intervals of humeral positions from 20° to 120° flexion. Repeated measures ANOVAs were used to evaluate kinematic differences between load conditions for scapular position angles, scapulohumeral rhythm and scapular motion extent. Increased scapular upward rotation was seen during shoulder flexion and extension as well as decreased posterior tilt and external rotation during eccentric and concentric arm descents of maximal loaded compared to unloaded conditions. Load effects were further seen for the scapulohumeral rhythm with greater scapular involvement at lower humeral positions and increased scapular motion extent under maximal loaded shoulder movements. With maximal load applied to the arm physiological scapular movement pattern are induced that may imply both impingement sparing and causing mechanisms. KW - Isokinetics KW - Motion analysis KW - Scapular dyskinesis KW - Scapulohumeral rhythm KW - Scapulothoracic Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2021.102517 SN - 1050-6411 SN - 1873-5711 VL - 57 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wassermann, Birgit A1 - Abdelfattah, Ahmed A1 - Wicaksono, Wisnu Adi A1 - Kusstatscher, Peter A1 - Müller, Henry A1 - Cernava, Tomislav A1 - Goertz, Simon A1 - Rietz, Steffen A1 - Abbadi, Amine A1 - Berg, Gabriele T1 - The Brassica napus seed microbiota is cultivar-specific and transmitted via paternal breeding lines JF - Microbial biotechnology N2 - Seed microbiota influence germination and plant health and have the potential to improve crop performance, but the factors that determine their structure and functions are still not fully understood. Here, we analysed the impact of plant-related and external factors on seed endophyte communities of 10 different oilseed rape (Brassica napus L.) cultivars from 26 field sites across Europe. All seed lots harboured a high abundance and diversity of endophytes, which were dominated by six genera: Ralstonia, Serratia, Enterobacter, Pseudomonas, Pantoea, and Sphingomonas. The cultivar was the main factor explaining the variations in bacterial diversity, abundance and composition. In addition, the latter was significantly influenced by diverse biotic and abiotic factors, for example host germination rates and disease resistance against Plasmodiophora brassicae. A set of bacterial biomarkers was identified to discriminate between characteristics of the seeds, for example Sphingomonas for improved germination and Brevundimonas for disease resistance. Application of a Bayesian community approach suggested vertical transmission of seed endophytes, where the paternal parent plays a major role and might even determine the germination performance of the offspring. This study contributes to the understanding of seed microbiome assembly and underlines the potential of the microbiome to be implemented in crop breeding and biocontrol programmes. Y1 - 2022 U6 - https://doi.org/10.1111/1751-7915.14077 SN - 1751-7915 VL - 15 IS - 9 SP - 2379 EP - 2390 PB - Wiley CY - Hoboken ER -